CS100M Fall 2007 Prelim 2 CIS121 Final Exam

Oct 16 7:30-9:00pm

Name:	Q1: (30)
(Legibly print last name, first name, middle name) NetID:	Q2: (20)
Statement of integrity:	Q3: (25)
I did not, and will not, violate the rules of academic integrity on this exam.	Q4: (25)
(Signature)	Total: (100)
Check here if you are in CIS121	

Circle your section instructor's name:

Circle your lecture time:

	Tuesday	Wednesday
10:10		Chris Scheper
11:15		Lucian Leahu
12:20	Lucian Leahu	Chris Scheper
1:25	Lucian Leahu	Chris Scheper
2:30	Mateo Restrepo	Mateo Restrepo
3:35	Mateo Restrepo	Kenneth Tsung

11:15

Instructions:

• This is a 90-minute, closed-book exam; no calculators are allowed.

9:05

or

- The exam is worth a total of 100 points, so you should try to spend no more than about 18 minutes on a 20-point question.
- Read each problem completely, including any provided code, before starting it.
- Raise your hand if you have any questions.
- Use the backs of pages or ask for additional sheets of paper as necessary.
- Clarity, conciseness, and good programming style count for credit.
- If you supply multiple answers, we will grade only *one*.
- Use only MATLAB code. No credit for code written in other programming languages.
- Assume there will be no input errors.
- Write user-defined functions only if asked to do so.
- Do not use cell arrays or structures.
- Do not use switch, try, catch, or break statements.
- You may find the following MATLAB predefined functions useful: abs, sqrt, rem, rand, floor, ceil, input, sprintf, disp

Examples:	$rem(5,2) \rightarrow 1$, the remainder of 5 divided by 2
	rand $(1,4) \rightarrow a$ row vector of 4 random real values, each in interval $(0,1)$
	floor(6.9), floor(6) \rightarrow 6, rounds down to the nearest integer
	$ceil(8.1)$, $ceil(9) \rightarrow 9$, rounds up to the nearest integer
	$strcmp('At', 'at') \rightarrow 0$, the two strings do not match; $strcmp('at', 'at') \rightarrow 1$

Question 1: (30 points)

Part (a): (2 points)

What does vector v look like after the following script is executed?

$$v = [0 \ 1];$$
for $k = 1:3$
 $v = [1 \ v];$
end

Part (b): (2 points)

What does vector w look like after the following script is executed?

$$w = [3 \ 2 \ 1];$$

 $w(w(3)) = w(1);$

Part (c): (10 points)

Assume that a and b are initialized scalars with a < b. Consider the following code fragment:

```
x= linspace(a,b,n);
y= sin(x);
```

Write an equivalent fragment that does not use function linspace and only calls the sine function with scalar input values.

Question 1, continued

Part (**d**): (6 points)

Assume that score is an initialized vector containing integer values in the interval [0,100]. (For example, score is a vector of student scores on a test). Write one statement on the blank below to complete the code fragment for drawing a histogram of the scores (with one bar for each score value 0, 1, 2, ..., 100).

```
count= zeros(1,101); % count will be used to store the histogram data
for k= 1:length(score)
end
bar(0:100, count) % draw a histogram of the scores
```

Part (e): (5 points)

Given the following function:

```
function f = evaluateQuadratic(a,b,c,x)

f = a*(x^2) + b*x + c;
```

What is the output when the following script is executed?

```
a=1; b=-1; c=3; x=2;
f= evaluateQuadratic(c,b,a,x)
```

Output:

Part (f): (5 points)

Given the following function:

```
function y = flip(x)

n= length(x);
for k= 1:n
     x(n-k+1)= x(k);
end
y= x;
```

What is the output when the following script is executed?

```
y= [10 20 30 40];
y= flip(y)
```

1			
1			
1			
1			

Output:

Question 2: (20 points)

Write a function s2hms to convert a time in seconds to a time in hours, minutes, and seconds. The function has one parameter (sec) and returns three numbers: h, m, and s. Read the given function comment below; write the function header and the function body.

Assume function $\pm 2 \text{hms}$ has been written correctly. Write a script to print the number of times in a day that h>m>s. Check whole seconds from 0 to $60 \times 60 \times 24$ -1. You must use function $\pm 2 \text{hms}$ to solve this problem.

Question 3: (25 points)

Complete function drawFrame below to draw a "frame" made up of black and white disks. Each disk is of unit radius and the lower left disk is centered at (0,0). Shown on the right is an example of a 5-by-4 frame with a spacing of 0.5 between disks. The function call to produce this example is drawFrame (5,4,0.5).

Assume that function DrawDisk is available. To draw a black disk of unit radius at position (3,4): DrawDisk(3,4,1,'k')

Write only the code to draw the disks. The grid lines are provided for your convenience—you do not need to draw them.


```
function drawFrame(h,w,s)
```

axis equal hold on

 $[\]mbox{\ensuremath{\upsigma}}\mbox{\ensuremath{\mbox{\ensuremath{\upsigma}}}\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\upsigma}}}\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\upsigma}}}\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensure$

[%] with space s between the disks. Black disks form the border; white

[%] disks are in inside. The lower left disk is centered at (0,0).

[%] Assume h, w>2 and s>=0.

Question 4: (25 points)

Complete function findPrefix(p,s) below to return the position of the first occurrence of a word that begins with string p in string s. If no word in s begins with string p, the function returns -1. For full credit, your algorithm should be efficient—stop after the first occurrence has been found. The only built-in functions that you may use are length and strcmp. Assume that p contains only lower case letters and s contains lower case letters and blanks. Below are four examples:

р	s	Returned value
mat	there is a mat in the lab	12
mat	there is a bat in the lab	-1
mat	matt uses matlab on a mat	1
mat	format a plot in matlab	18
	123456789111111111222222	·

In the last example above, the word "format" in s includes the substring 'mat' but that doesn't count since 'mat' does not appear in the beginning of the word.

0123456789012345

```
function k = findPrefix(p, s)
% k is the position in string s of the first occurrence of a word that
%  begins with string p
% k is -1 if no word in string s begins with string p
% p contains lower case letters only
% s contains lower case letters and blanks only
```