
CS1115 Fall 2013 Project 1 Due Thursday September 12 at 11pm

You must work either on your own or with one partner. You may discuss background issues and general solution

strategies with others, but the project you submit must be the work of just you (and your partner). If you work

with a partner, you and your partner must first register as a group in CMS and then submit your work as a group.

Each problem is worth 5 points. One point may be deducted for poor style. Your best six (of seven) assignments are

counted.

Objectives

Completing this project will help you learn about Matlab scripts, assignment statements, if-else statements,
for-loops, while-loops, and some Matlab built-in functions.

1 A Limited Cosine-Sine Table

Here are three known cosines:

cos(0o) = 1

cos(60o) = 1/2

cos(72o) = 1/(1 +
√

5).

Using trigonometric identities it is possible to compute various sines and cosines without resorting to the
built-in functions sin and cos. For example, here is a fragment that computes cos(132o):

c60 = 1/2;

c72 = 1/(1 + sqrt(5));

s60 = sqrt(1 - c60^2);

s72 = sqrt(1 - c72^2);

c132 = c72*c60 - s72*s60;

Figure out how to compute cos(3o) and sin(3o) using trig identities. For this purpose you will find useful
trigonometric identities on page 414 of FVL.

Write a script P1 that displays x, cos(xo) and sin(xo) for x = 0, 3, 6, ..., 87, 90. For full credit your solution
script must not make use of the built-in cosine and sine functions. The table should have three columns: x,
cos(xo), and sin(xo). Use the %3d format for x and the %20.15f format when displaying the cosine and sine.
The table should have a heading and look nice. Include comments in the script so that the reader can track
your use of the trig identities. Submit your solution file P1.m to CMS.

2 Excellent Integers

We say that a positive whole number x is an excellent integer if x = 2j3k for some choice of integers j and
k. There are 20 excellent integers less than 100:

1 = 20 · 30 3 = 20 · 31 9 = 20 · 32 27 = 20 · 33 81 = 20 · 34

2 = 21 · 30 6 = 21 · 31 18 = 21 · 32 54 = 21 · 33

4 = 22 · 30 12 = 22 · 31 36 = 22 · 32

8 = 23 · 30 24 = 23 · 31 72 = 23 · 32

16 = 24 · 30 48 = 24 · 31

32 = 25 · 30 96 = 25 · 31

64 = 26 · 30

Write a script P2 that solicits a positive integer M using input and nicely displays its value and the number
of excellent integers that are less than or equal to M . (You do not have to print out the excellent integers.)
To force issues, your solution must not involve nested loops, user-defined functions, or arrays. The built-in
functions log, floor, and ceil are useful for this problem. Submit P2.m to CMS.

1

3 Spiral in a Box

Download and run the script P3.m from CMS. It is a slight modification of the script spiral that you worked
with in the lab:

Edges = 400 Turn Angle (degrees) = 65

Notice that a “box” is now part of the graphic display. We say that an edge is bad if one or both of its
endpoints are strictly outside the box. In this assignment you are to modify P3 so that spiral generation
ends as soon as the first bad edge is encountered:

Edges = 220 Turn Angle (degrees) = 65

To do this problem for full credit, you must replace the for-loop that generates the “full” spiral with a
while-loop that generates the “boxed” spiral. And just to be clear, the first bad edge is not displayed. One
final detail, instead of displaying the value of numEdges in the figure window, your script should display the
number of “boxed” edges. Submit your modified P3.m to CMS. Points off for poorly commented code.

4 Perimeter GUI

Download the files PerimeterGUI.fig and PerimeterGUI.m from CMS. Open PerimeterGUI.fig in GUIDE
and observe that this (sloppy) GUI can report various estimates of the perimeter of the displayed ellipse. In
particular, it can display the estimates P1, P2 and P3 that can be found on page 14 of FVL. (a) By using the
property editor, clean up the appearance of the GUI. In addition to resizing and aligning the components,
play with color, fontsize, and font and the background color of the whole figure window. (Type uisetfont

in the command window to see available fonts.) Add a title using Static Text and enclose the pop-up menu

2

with a nicely sized and colored panel. The goal here is simply to get experience with GUIDE. (b) Now let’s
modify the GUI so that it can display the perimeter estimates P4, P5, and P6 given in FVL page 14. First,
using the Property Editor, update the ’String’ property of the pop-up menu so that it includes formulas
P4, P5, and P6. Next, scroll through PerimeterGUI.m until you reach the line that begins with function

popupmenu1 Callback. The commands that follow process the pop-up menu when a selection is made. By
mimicking what you see, add code so that the GUI correctly processes pop-up menu requests for the P4, P5,
and P6 values. The goal is not to understand fully PerimeterGUI.m but to get experience modifying a small
part of the code that hopefully makes sense.

Challenge 1: Average Distance to the Sun.

Suppose Ithaca is at (0,0) and that you take a 9-day trip visiting Syracuse (20,40) for 3 days, Rochester
(-50,45) for 2 days, and Elmira (-20,-15) for 4 days. What is your average distance from Ithaca during your
trip? A plausible answer to this question is

dave =
3

9

√

202 + 402 +
2

9

√

502 + 452 +
4

9

√

202 + 152,

i.e., a weighted average of distances where the weight associated with a given point is the fraction of time
spent at that point. In this problem we use a similar idea to approximate the average distance of a planet
to the Sun as it moves along its elliptical orbit. Kepler’s “equal area” law will be taken into account.

We start with some math facts about the orbit itself. Assume that (a) the Sun is positioned at (0,0), (b)
P is the minimum Sun-to-planet distance, and (c) A is the maximum Sun-to-planet distance. The orbit can
then be described parametrically as follows:

x(τ) =

(

P − A

2

)

+

(

P + A

2

)

cos(τ)

y(τ) =
√

P ·A sin(τ)

where the parameter τ satisfies 0 ≤ τ ≤ 2π.
For a given even integer N we define the orbit points Q0, Q1, . . . , QN as follows

Qk = (xk, yk), xk = x(τk), yk = y(τk), τk =
2πk

N
.

Note that Q0 = QN . The orbit points points allow us to partition the ellipse into sectors, e.g.,

S

Let sector k be defined by the Sun, Pk−1, and Pk. Let αk be its area and let ρk be the time it takes for the
planet to move from Pk−1 to Pk. A consequence of Kepler’s equal-area law is that

αk

α1 + · · ·+ αN

=
ρk

ρ1 + · · ·+ ρN

.

3

To make sense of this, note that p = ρ1 + · · ·+ ρN is the period of revolution and a = α1 + · · ·+ αN is the
total area enclosed by the orbit. Thus,

ρk

p
=

αk

a
,

i.e., the fraction of time that the planet spends “sweeping out” a sector is exactly same as the ratio of the
sector’s area to the total area.

For a given N , we define the average distance between the planet and the Sun by

dave(N) =

N
∑

k=1

(αk

a

)

(

dk−1 + dk

2

)

where

dk =
√

x2

k + y2

k.

This is analogous to our upstate NY trip calculation. When the planet “visits” the kth sector the fraction of
time that it spends there is αk/a and we define its distance to the Sun by the average of dk−1 (the distance
from Pk−1 to the Sun) and dk (the distance from Pk to the Sun).

Although the area enclosed by the orbit has a simple formula,

a = π

(

P + A

2

)√
P · A

the sector area αk does not. However, we can approximate αk by the area of the triangle defined by the
Sun, Pk−1 and Pk:

S

P
1

P
2

Area
2

Write a script C1 that solicits P and A using input and computes the value of

d̃ave(N) =

N
∑

k=1

(

Areak

a

)(

dk−1 + dk

2

)

A formula for triangle area can be found on page 413 of FVL. As to the value of N , it would seem that
d̃ave(N) should converge to a limit as N → ∞. Eexperiment and select a value that you think would satisfy
a user who wants accuracy through the third decimal place. You may assume that the inputs P and A
satisfy 1 <= P ≤ A ≤ 1000.

Your script should neatly output the value of P , A, N , d̃ave(N), and (P + A)/2. (FYI, (P + A)/2 is
the average distance formula used in Kepler’s Third Law). To force issues, your script should not use arrays
or user-defined functions. Submit your implementation of C1 to CMS. You may not work in groups on

any challenge problem.

Interesting choices for (P, A): Mercury = (46,70), Venus = (107,109), Earth = (147,152), Mars =
(207,249), Jupiter = (741,817), Saturn (1354,1513), and Halley’s comet = (88,5265). These distances are in
106km.

4

