Announcements

- Project 6 due tonight
 - Extra instructor office hours: 4-6pm
 - Late submissions accepted tomorrow w/ penalty
- Exercise 13 due tomorrow
 - Submit what you got done in section
- Please fill out course eval survey
- Final exam Mon, May 24
 - Fill out logistics survey on Canvas
 - Review materials posted to website
 - Review session Wed, May 19
 - Watch calendar for extra consulting and office hours
Previous Lecture:
- Algorithms for sorting and searching
 - Insertion Sort
 - (Read about Bubble Sort in Insight)
 - Linear Search
 - Binary Search

Yesterday’s exercise:
- Efficiency (complexity) analysis: analyze loops, count number of operations, use timing functions
- Time efficiency vs. memory efficiency

Today, Lecture 27:
- Another “divide and conquer” strategy: Merge Sort
- Review recursion
- Semester wrap-up
What is true of the half we keep?

- Let L be the leftmost page we keep (may be 0, aka front cover)
- Let R be the page after the last one we keep (might be $\text{length}(v)+1$, aka back cover)
- Then the name we are looking for is \geq the first name on page L, and $< \text{the first name on page R}$
- When only one page left ($R = L+1$),
 - If name is in book, it will be on page L
 - If name is not in book, it should be inserted after some names already on page L
Binary search: target $x = 70$

L: 0
Mid: 6
R: 13

$v(Mid) \leq x$

So throw away the left half...
Binary search: target $x = 70$

L: 6
Mid: 9
R: 13

$x < v(Mid)$

So throw away the right half...
Binary search: target $x = 70$

$v(Mid) \leq x$

So throw away the left half...
Binary search: target \(x = 70 \)

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
v & 12 & 15 & 33 & 35 & 42 & 45 & 51 & 62 & 73 & 75 & 86 & 98 \\
\end{array}
\]

\(v(\text{Mid}) \leq x \)

So throw away the left half...
Binary search: target \(x = 70 \)

\[
\begin{array}{c}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
12 & 15 & 33 & 35 & 42 & 45 & 51 & 62 & 73 & 75 & 86 & 98 \\
\end{array}
\]

\(\text{L:} \quad 8 \)

\(\text{Mid:} \quad 8 \)

\(\text{R:} \quad 9 \)

Done because \(R - L = 1 \)
function L = binarySearch(x, v)
% Find position after which to insert x. v(1)<...<v(end).
% L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

% Keep halving [L..R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1
 m= floor((L+R)/2); % middle of search window
 if

 else

 end
end
function L = binarySearch(x, v)
% Find position after which to insert x. v(1)<...<v(end).
% L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

% Keep halving [L..R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1
 m= floor((L+R)/2); % middle of search window
 if v(m) <= x
 L= m;
 else
 R= m;
 end
end
function L = binarySearch(x, v)
% Find position after which to insert x. v(1)<...<v(end).
% L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

% Keep halving [L..R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1
 m= floor((L+R)/2); % middle of search window
 if v(m) <= x
 L= m;
 else
 R= m;
 end
end

Play with showBinarySearch.m
What happens if the values in the sorted vector are not unique? Say, the target value is in the vector and that value appears in the vector multiple times…

A. The first occurrence is identified
B. The last occurrence is identified
C. Any one of the occurrences may be identified
D. Binary search doesn’t work

% Maintain a search window [L..R] such that v(L)≤x<v(R).
Binary search is efficient, but we need to sort the vector in the first place so that we can use binary search

- Many different algorithms out there...
- We saw insertion sort (and read about bubble sort)
- Let’s look at **merge sort**
- Another example of the “divide and conquer” approach (like binary search) but using recursion
Which task fundamentally requires less work: sort a length 1000 array, or merge* two length 500 sorted arrays into one?

A. Sort
B. Merge
C. The same

*Merge two sorted arrays so that the resultant array is sorted (not concatenate two arrays)
The central sub-problem is the **merging** of two sorted arrays into one single sorted array.
Merge

\[
\begin{align*}
x &: 12 \ 33 \ 35 \ 45 \\ y &: 15 \ 42 \ 55 \ 65 \ 75 \\
z &: \\
\end{align*}
\]

\[
\begin{align*}
ix &: 1 \\
iy &: 1 \\
iz &: 1 \\
\end{align*}
\]

\[
ix \leq 4 \text{ and } iy \leq 5: \ x(ix) \leq y(iy) \quad ???
\]
ix <= 4 and iy <= 5: x(ix) <= y(iy) YES
Merge

ix <= 4 and iy <= 5: x(ix) <= y(iy) ???
Merge

\[ix \leq 4 \text{ and } iy \leq 5: \quad x(ix) \leq y(iy) \quad \text{NO} \]
Merge

\[\text{ix} \leq 4 \text{ and iy} \leq 5: \ x(\text{ix}) \leq y(\text{iy}) \]
Merge

ix <= 4 and iy <= 5: x(ix) <= y(iy) YES
ix <= 4 and iy <= 5: x(ix) <= y(iy) ???
ix <= 4 and iy <= 5: x(ix) <= y(iy) YES
Merge

\[\text{ix} \leq 4 \text{ and } \text{iy} \leq 5: \quad x(\text{ix}) \leq y(\text{iy}) \quad ??? \]
Merge

ix <= 4 and iy <= 5: x(ix) <= y(iy) NO
ix <= 4 and iy <= 5: x(ix) <= y(iy) ???
Merge

\[\text{x: 12 33 35 45} \quad \text{ix: 4} \]

\[\text{y: 15 42 55 65 75} \quad \text{iy: 3} \]

\[\text{z: 12 15 33 35 42 45} \quad \text{iz: 6} \]

\[\text{ix}\leq4 \text{ and iy}\leq5: \ x(\text{ix}) \leq y(\text{iy}) \quad \text{YES} \]
Merge

\[\text{ix} > 4 \]
Merge

\[
x: \begin{array}{cccc}
12 & 33 & 35 & 45 \\
\end{array}
\]

\[
y: \begin{array}{ccccc}
15 & 42 & 55 & 65 & 75 \\
\end{array}
\]

\[
z: \begin{array}{cccccccc}
12 & 15 & 33 & 35 & 42 & 45 & 55 & \text{ } \\
\end{array}
\]

ix: 5
iy: 3
iz: 7

\text{ix > 4: take } y(iy)
Merge

\[
x: 12 \ 33 \ 35 \ 45 \\
y: 15 \ 42 \ 55 \ 65 \ 75 \\
z: 12 \ 15 \ 33 \ 35 \ 42 \ 45 \ 55
\]

\[i_y \leq 5\]
Merge

\[x: 12 \ 33 \ 35 \ 45 \]
\[y: 15 \ 42 \ 55 \ 65 \ 75 \]
\[z: 12 \ 15 \ 33 \ 35 \ 42 \ 45 \ 55 \ 65 \]

\[i_x: 5 \]
\[i_y: 4 \]
\[i_z: 8 \]

\[i_y \leq 5 \]
Merge

\[ix: 5 \]

\[iy: 5 \]

\[iz: 9 \]

\[iy \leq 5 \]
Merge

\[\text{iy} \leq 5 \]
function z = merge(x,y)
 nx = length(x); ny = length(y);
 z = zeros(1, nx+ny);
 ix = 1; iy = 1; iz = 1;
function z = merge(x,y)
nx = length(x); ny = length(y);
z = zeros(1, nx+ny);
ix = 1; iy = 1; iz = 1;
while ix<=nx && iy<=ny
end

% Deal with remaining values in x or y
function z = merge(x,y)
 nx = length(x); ny = length(y);
 z = zeros(1, nx+ny);
 ix = 1; iy = 1; iz = 1;
 while ix<=nx && iy<=ny
 if x(ix) <= y(iy)
 z(iz)= x(ix); ix=ix+1; iz=iz+1;
 else
 z(iz)= y(iy); iy=iy+1; iz=iz+1;
 end
 end
 % Deal with remaining values in x or y
function z = merge(x,y)
 nx = length(x); ny = length(y);
 z = zeros(1, nx+ny);
 ix = 1; iy = 1; iz = 1;
 while ix<=nx && iy<=ny
 if x(ix) <= y(iy)
 z(iz)= x(ix); ix=ix+1; iz=iz+1;
 else
 z(iz)= y(iy); iy=iy+1; iz=iz+1;
 end
 end
 while ix<=nx
 z(iz)= x(ix); ix=ix+1; iz=iz+1;
 end
 while iy<=ny
 z(iz)= y(iy); iy=iy+1; iz=iz+1;
 end
If I have two helpers, I’d…

• Give each helper half the array to sort
• Then I get back the sorted subarrays and merge them.
Cost of dividing work

Suppose each comparison we make costs $1

Given a vector with N elements,

- Insertion sort costs $N(N-1)/2
- Merge costs $(N-1)$

(worst case)

Consider a vector with 8 elements

- Sorting by ourselves: $26

- Sorting by delegating work:
 - Left delegate (4 elements): $6
 - Right delegate (4 elements): $6
 - Merge (8 elements): $7
 - Profit: $7!
Merge sort: Motivation

If I have two helpers, I’d…
- Give each helper half the array to sort
- Then I get back the sorted subarrays and merge them.

What if those two helpers each had two sub-helpers?
And the sub-helpers each had two sub-sub-helpers? And…
Subdivide the sorting task
Subdivide again
And again
And one last time
Now merge

E H G M B K A Q F L D P C R J N
H E M G B K A Q F L P D R C J N
And merge again
And again
And one last time

A B C D E F G H J K L M N P Q R

A B E G H K M Q

C D F J L N P R
function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if (task is trivial)
 % Base case
else
 % Divide work
 % Delegate subproblems
 % Merge results
end
function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1
 y = x;
else
 % Divide work
 % Delegate subproblems
 % Merge results
end
function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1
 y = x;
else
 m = floor(n/2);
 yL = mergeSort(x(1:m));
 yR = mergeSort(x(m+1:n));
 y = merge(yL,yR);
end
function y=mergeSort(x)
n=length(x);
if n==1
 y=x;
else
 m=floor(n/2);
 yL=mergeSort(x(1:m));
 yR=mergeSort(x(m+1:n));
 y=merge(yL,yR);
end
function y=mergeSort(x)
 n=length(x);
 if n==1
 y=x;
 else
 m=floor(n/2);
 yL=mergeSort(x(1:m));
 yR=mergeSort(x(m+1:n));
 y=merge(yL,yR);
 end
function y=mergeSort(x)
 n=length(x);
 if n==1
 y=x;
 else
 m=floor(n/2);
 yL=mergeSort(x(1:m));
 yR=mergeSort(x(m+1:n));
 y=merge(yL,yR);
 end
How do merge sort and insertion sort compare?

- Insertion sort: (worst case) makes k comparisons to insert an element in a sorted array of k elements. For an array of length N: $1+2+\ldots+(N-1) = N(N-1)/2$, say N^2 for big N

- Merge sort:
function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1
 y = x;
else
 m = floor(n/2);
 yL = mergeSort(x(1:m));
 yR = mergeSort(x(m+1:n));
 y = merge(yL,yR);
end

All the comparisons between vector values are done in merge
Merge sort: about $\log_2(N)$ “levels”;
about N comparisons each level
How do merge sort and insertion sort compare?

- **Insertion sort**: (worst case) makes \(i \) comparisons to insert an element in a sorted array of \(i \) elements. For an array of length \(N \):
 \[
 1 + 2 + \ldots + (N-1) = \frac{N(N-1)}{2}, \text{ say } N^2 \text{ for big } N
 \]

- **Merge sort**: \(N \cdot \log_2(N) \)

- Insertion sort is done *in-place*; merge sort (recursion) requires extra memory (call frames plus merge area)

See `compareInsertMerge.m`
How to choose??

- Depends on application
- Merge sort is especially good for sorting large data sets
 - Easily adapted to work with files if data is too big for memory
- Sort “stability” matters for object handles (elements may compare equal, but are actually distinct)
 - Insertion, Merge are intrinsically stable. QuickSort is not, but MATLAB’s `sort()` does extra work to stabilize
- Insertion sort is “order N^2” at worst case, but what about an average case?
 - Insertion good for “fixing” a mostly sorted array, or adding just a few new elements
What we learned…

- Develop/implement **algorithms** for problems
- Develop programming skills
 - Design, implement, document, test, and debug
- Programming “tool bag”
 - Functions for reducing redundancy
 - Control flow (if-else; loops)
 - Recursion
 - Data structures, type
 - Graphics
 - File handling
What we learned... (cont’d)

- Applications and concepts
 - Image processing
 - Object-oriented programming—custom type
 - Sorting and searching (you should know the algorithms covered)
 - Approximation and error
 - Simulation, sensitivity analysis
 - Computational effort and efficiency
Where to go from here?

- **Mathworks.com** – Many free tutorials available on specific topics, e.g., signal processing, Simulink, …, etc.
- More detailed intro to scientific and engineering uses: “*Getting Started with MATLAB*” by Rudra Pratap. Excellent for independent, non-course-based learning
- Just play, i.e., experiment, with MATLAB programs! Many programs available in MATLAB “*Community*” forum “*File Exchange*”
Some courses for future consideration

- **ENGRD/CS 2110** Object-oriented programming and data structure
 - CS 2111 Programming practicum
- **CS 2800** Discrete Math (logic, proof, probability theory)
- **CS 3220** Computational Mathematics for Computer Science
- Short language courses (e.g., Python, C++)
Computing gives us *insight* into a problem

- Computing is **not** about getting one answer!
- We build models and write programs so that we can “play” with the models and programs, learning—gaining insights—as we vary the parameters and assumptions
- Good models require domain-specific knowledge (and experience)
- Good **programs** …
 - are correct and have been thoroughly tested
 - are modular and cleanly organized
 - are well-documented
 - use appropriate data structures and algorithms
 - are reasonably efficient in time and memory
Best wishes and good luck with all your exams!