Lecture 5: Definite iteration

- Previous lecture:
 - Logical operators (&&, | |, ~) and “short-circuiting”
 - Nested if-statements
 - Top-down design

- Today:
 - Iteration using for
 - (at home) Watch MatTV episode “Troubleshooting for-loops”

- Announcements:
 - P1 due tonight, 11pm EST
 - Late submissions accepted tomorrow with 5% penalty
 - Read Insight §2.2 (or MatTV episode on while-loop) and Insight §3.2 before next lecture
Question

A 1 meter-long stick is split into two pieces. The breakpoint is randomly selected. On average, how long is the shorter piece?

Thought experiment? → analysis
Physical experiment?
Computational experiment! → simulation

Need to repeat many trials!
A 1 meter-long stick is split into two pieces. The breakpoint is randomly selected (equally likely anywhere along the stick). On average, how long is the *shorter* piece?

A: $\frac{1}{4}$ m
B: $\frac{1}{3}$ m
C: $\frac{1}{2}$ m
D: other
Simulation:

use code to imitate the physical experiment

% one trial of the experiment
breakPt = rand();
if breakPt < 0.5
 shortPiece = breakPt;
else
 shortPiece = 1 - breakPt;
end
More shortcuts: \texttt{min()}

\begin{verbatim}
% one trial of the experiment
breakPt = rand();
shortPiece = min(breakPt, 1 - breakPt);
\end{verbatim}

Want to do many trials, add up the lengths of the short pieces, and then divide by the number of trials to get the average length.
Algorithm (bottom-up development)

Repeat many times:

```plaintext
% one trial of the experiment
breakPt = rand();
shortPiece = min(breakPt, 1-breakPt);
```

Take average

Print result
n = 10000; \% number of trials
total = 0; \% accumulated length so far

for k = 1:1:n \% Repeat many times
 \% one trial of the experiment
 breakPt = rand();
 shortPiece = min(breakPt, 1 - breakPt);
 total = total + shortPiece;
end

avgLength = total/n; \% Take average
fprintf('Average length is %f\n', ...
 avgLength) \% Print result

See stickExp.m, showForLoop.m
Syntax of the `for` loop

```
for <var> = <start value>:<incr>:<end bound>
    statements to be executed repeatedly
end
```

Loop header specifies all the values that the index variable will take on, one for each pass of the loop.

E.g, \(k = 3 : 1 : 7 \) means \(k \) will take on the values 3, 4, 5, 6, 7, one at a time.
for loop examples

for k = 2:0.5:3
 k takes on the values 2, 2.5, 3
 disp(k)
 Non-integer increment is OK
end

for k = 1:4
 k takes on the values 1, 2, 3, 4
 disp(k)
 Default increment is 1
end

for k = 0:-2:-6
 k takes on the values 0, -2, -4, -6
 disp(k)
 “Increment” may be negative
end

for k = 0:-2:-7
 k takes on the values 0, -2, -4, -6
 disp(k)
 Colon expression specifies bounds
end

for k = 5:2:1
 The set of values for k is the empty set: the loop body won’t execute
 disp(k)
end
Pattern for doing something n times

\[n = _____ \]
\[\textbf{for } k = 1:n \]
\[\% \text{ code to do} \]
\[\% \text{ that something} \]
\[\textbf{end} \]
% Average 10 numbers from user input

n = 10; % number of data values

total = 0; % current sum (initialized to zero)

for k = 1:n
 % read and process input value
 num = input('Enter a number: ');

 total = total + num;
end

avg = total/n; % average of n numbers

fprintf('Average is %f
', avg)
% Average 10 numbers from user input

clear % clear workspace

n= 10; % number of data values

for k = 1:n
 % read and process input value
 num = input('Enter a number: ');
 total = total + num;
end

avg = total/n; % average of n numbers

fprintf('Average is %f
', avg)
Remember to initialize

% Average 10 numbers from user input

n= 10; % number of data values
total= 0; % current sum (initialized to zero)
for k = 1:n
 % read and process input value
 num= input('Enter a number: ');
 total= total + num;
end
avg= total/n; % average of n numbers
fprintf('Average is %f
', avg)
Important Features of Iteration

- A task can be accomplished if some steps are repeated; these steps form the **loop body**
- Need a **starting point**
- Need to know **when to stop**
- Need to keep track of (and measure) progress—**update**
Monte Carlo methods

1. Derive a relationship between some *desired quantity* and a *probability*

2. Use simulation to estimate the probability
 - Computer-generated random numbers

3. Approximate desired quantity based on prob. estimate
Monte Carlo Approximation of π

Throw N darts

Sq. area = $L \times L$

Circle area = $\pi L^2 / 4$

Prob. landing in circle
= (circle area)/(sq. area)
= $\pi / 4$
$\approx N_{\text{in}} / N$
Monte Carlo Approximation of π

Throw N darts

$$\pi \approx 4 \frac{N_{in}}{N}$$
Monte Carlo Approximation of π

For each of N trials
 Throw a dart
 If it lands in circle
 add 1 to total # of hits

π is $4 \times \text{hits}/N$
Monte Carlo Approximation of π with N darts on L-by-L board

$N=___;$

for $k = 1: N$

end

myPi = 4*hits/N;
Monte Carlo Approximation of π with N darts on L-by-L board

```matlab
N=__;
for k = 1:N
    % Throw kth dart
    % Count it if it is in the circle
end
myPi = 4*hits/N;
```

See mcPi.m
Monte Carlo Approximation of π with N darts on L-by-L board

N=__; L=__; hits= ???

for k = 1:N
 % Throw kth dart
 x= rand()*L - L/2;
 y= rand()*L - L/2;
 % Count it if it is in the circle
 if sqrt(x^2 + y^2) <= L/2
 hits= hits + 1;
 end
end

myPi= 4*hits/N;
What will be displayed when you run the following script?

```matlab
for k = 4:6
    disp(k)
k = 9;
disp(k)
end
```

Watch MatTV to find out!

Episode IX: Troubleshooting Loops
Wrap-up review

% What will be printed?

for k = 1:2:6
 fprintf('%d ', k)
end
printf('\n')

A: 1 2 3 4 5 6
B: 1 3 5 6
C: 1 3 5
D: error
 (incorrect bounds)
Example: \(n \)-gon \(\rightarrow \) circle

Inscribed hexagon
\[
\frac{n}{2} \sin\left(\frac{2\pi}{n}\right)
\]

Circumscribed hexagon
\[
n \tan\left(\frac{\pi}{n}\right)
\]

As \(n \) approaches infinity, the inscribed and circumscribed areas approach the area of a circle.

When will \(|\text{OuterA} - \text{InnerA}| \leq 0.00001\)?