Name: \qquad NetID: \qquad
(Legibly print last name, first name, middle name)
Statement of integrity: I did not, and will not, violate the rules of academic integrity on this exam.
(Signature)

Circle your lecture time: 9:05 or 11:15

Circle your discussion instructor's name:

	Tuesday	Wednesday
$10: 10$		Helen Sun
$11: 15$		Kun Dong
$12: 20$	Susie Song	Helen Sun
$1: 25$	Susie Song	Kun Dong
$2: 30$	Matthew Davidow	Noam Eshed
$3: 35$	Matthew Davidow	Noam Eshed

Instructions:

- This is a 90 -minute, closed-book exam; no calculators are allowed.
- The exam is worth a total of 100 points, so it's about one point per minute!
- Read each problem completely, including any provided code, before starting it.
- Raise your hand if you have any questions.
- Use the back of the pages or ask for additional sheets of paper as necessary.
- Clarity, conciseness, and good programming style count for credit.
- If you supply multiple answers, we will grade only one.
- Use only Matlab code. No credit for code written in other programming languages.
- Assume there will be no input errors.
- Do not modify given code unless instructed to do so.
- Do not write user-defined functions or subfunctions unless instructed to do so.
- Do not use switch, try, catch, break, continue, or return statements.
- Do not use built-in functions that have not been discussed in the course.
- You may find the following Matlab predefined functions useful:
abs, sqrt, rem, floor, ceil, round, rand, zeros, ones, linspace, length, input, fprintf, disp, bar
Examples:
rem $(5,2) \rightarrow 1$, the remainder of 5 divided by 2
rand \rightarrow a random real value in the open interval $(0,1)$
floor(6.9), floor(6) $\rightarrow 6$, rounds down to the nearest integer
ceil(8.1), ceil(9) $\rightarrow 9$, rounds up to the nearest integer
zeros $(1,4) \rightarrow 1$ row 4 columns of zeros
length ([2 48 8]) $\rightarrow 3$, length of a vector

Question 1: (15 points)

(a) In each of the following cases, is it better to use a for-loop or a while-loop? Circle only one choice (for or while) for each case. By "better," first consider run-time efficiency and then compactness of the code. Recall that the break keyword is not allowed.
for / while Case 1 Calculate the first 100 Fibonacci numbers.
for / while Case 2 Prompt the user to input a value until a negative value is entered.
for / while Case 3 Find the smallest value in a vector.
for / while Case 4 Find the first instance of the value 5 in a vector of integers.
(b) Write one expression on the blank so that b is a uniformly random real value generated in the interval $(-14.1,5)$. The only built-in function allowed is rand.
$\mathrm{b}=$ \qquad
(c) Write one expression on the blank so that scalar c is randomly chosen from the set $[0,2,4, \ldots, 100]$ with equal likelihood. (Note that c is even.) The only built-in functions allowed are rand, floor, and ceil.
c=

(d) What will be printed when the following script is executed? Use the specified print format.

Script	Function
$\mathrm{x}=3 ;$	function $[\mathrm{a}, \mathrm{b}]=$ gobble (y, x)
$\mathrm{y}=5 ;$	$\mathrm{a}=\mathrm{y}-\mathrm{x} ;$
$[\mathrm{x}, \mathrm{z}]=$ gobble $(\mathrm{x}, \mathrm{y}) ;$	x,
fprintf('x is $\% \mathrm{~d} \backslash \mathrm{n}$ ', x$)$	$\mathrm{b}=\mathrm{x}+10 ;$
fprintf('y is $\% \mathrm{~d} \backslash \mathrm{n}$ ', y)	$\mathrm{z}=20 ;$
fprintf('z is $\% \mathrm{~d} \backslash \mathrm{n}$ ', z$)$	fprintf('a is $\% \mathrm{~d} \backslash \mathrm{n}$ ', a)

Question 2: (10 points)

A leap year is a year that is divisible by 4 with one exception: years divisible by 100 are not leap years unless they are also divisible by 400 . For example, the year 2016 was a leap year, the year 1600 was a leap year, but the year 1700 was not a leap year.
Complete the script below to determine whether the given variable y corresponds to a leap year. The script should display the word "leap" if y is a leap year; otherwise "not leap" should be displayed.

```
y= input('Enter a year: '); % Assume y is an integer > 0
% Determine whether y is a leap year
```


Question 3: (20 points)

Implement the following function as specified:
function idx $=$ whereGreater (v, w)
\% Find the indices of the values in vector w that are greater than all the values in v. $\% \mathrm{v}$, w: each is a non-empty vector of type double values.
$\%$ idx: a vector of the indices of w where w is strictly greater than all the values
$\% \quad$ in $v ; i d x$ may be empty.
$\%$ Example: If v is $\left[\begin{array}{lll}2 & 3 & 0\end{array}\right]$ and w is $\left[\begin{array}{llll}5 & 3 & -6 & 9\end{array}\right]$, then idx is [14] because $w(1)$ and $w(4)$ $\% \quad$ are greater than all the values in v .
\% The only built-in function allowed is length.
\% Be run-time efficient for full credit.

Question 4: (30 points)

(a) Implement the following function as specified:
function [pFinal, hFinal] = doubleGame (pStart, hStart)
\% Simulate the "double game," a betting game between a player and a host. $\%$ pStart: a positive number of chips with which the player starts the game. $\%$ hStart: a positive number of chips with which the host starts the game.
$\%$ A game consists of 1 or more rounds. The betting starts at 1 chip. In each round of \% the game Player flips a coin: heads means Player wins the bet from Host and the \% game ends (no more rounds); tails means Player loses the bet to Host but can start $\%$ another round that doubles the bet if Player and Host each has enough chips for the $\%$ bet. The game ends when Player wins a bet or when Player or Host does not have $\%$ enough chips for the bet.
\% pFinal, hFinal: the number of chips that Player and Host have, respectively, at the $\%$ end of the game.

Question 4, continued.

(b) Assume that function doubleGame from Part (a) has been correctly implemented; make effective use of it in order to implement the following function as specified:
function [count, playerAve] = manyDoubleGames(n,pStart,hStart)
\% Simulate the "double game" n times, each time with Player starting with pStart chips \% and Host starting with hStart chips. n, pStart, and hStart are each a positive \% integer.
\% count is a vector of appropriate length such that count (k) is the number of times
\% that Player ends the game with $\mathrm{k}-1$ chips. I.e., count(1) is the number of times
\% that Player ends the game with 0 chip, count(2) is the number of times that Player
\% ends the game with 1 chip, ..., etc.
\% playerAve is the average number of chips with which Player ends the game.
\% The only built-in function allowed is zeros.
\% Be run-time efficient for full credit.

Question 5: (25 points)

Complete the function below as specified. Do not use any built-in functions other than rem, length and zeros. The diagram on the right shows an example graphic produced by the following statements:

$$
\text { green }=\left[0 \text {. } 9 \text {.3]; brown }=\left[\begin{array}{lll}
.7 & .5 & 0
\end{array}\right]\right. \text {; }
$$

treePlot(0, 0, 8, 1, green, brown)

Assume the availability of the function DrawDisk. For example, the command

$$
\text { DrawDisk(3, 2, .5, [1 } 000])
$$

draws a red disk of radius 0.5 centered at $(3,2)$. Your code draws only the disks. The grid lines and the rgb values are shown for your convenience; do not draw them.

```
function treePlot(xc, yc, n, r, green, brown)
% Draw a "tree" where the nth row has n leaves. Each leaf is a disk of radius r.
% The top leaf of the tree is centered at xc, yc.
% The remaining rows of leaves grow alternately to the left and to the right.
% The top leaf has the color green; the bottom row of leaves has the color brown;
% the rows in between vary uniformly in color (linearly interpolated).
close all; figure; axis equal; hold on
```

hold off

Hint: DECOMPOSE! First work on drawing the disks at the correct locations all in one color; then revise your code to deal with the color interpolation.

