
Announcements

◼ Extra office hours today (instead of DIS sections); Zoom links on Canvas

◼ P6 due tonight at 11pm

◼ Test 2B feedback and grade estimation on website

◼ Final exam: Mon, 5/18, 9am. “2.5 hr” take-home, 48 hr submission window

◼ Optional review session: Sunday, 5/17, 2pm, Zoom (see Canvas)

◼ Please fill out course evaluation, worth one BONUS point, which can be used
against any point lost on the final exam (150 points).

◼ Regular office/consulting hours end today. Study period hours are posted on
Canvas and course website.

◼ Previous Lecture (and exercise):
◼ Algorithms for sorting and searching

◼ Insertion Sort
◼ (Read about Bubble Sort in Insight)
◼ Linear Search
◼ Binary Search

◼ Efficiency (complexity) analysis: analyze loops, count number
of operations, use timing functions

◼ Time efficiency vs. memory efficiency

◼ Today, Lecture 26:
◼ Another “divide and conquer” strategy: Merge Sort
◼ Review recursion
◼ Semester wrap-up

Binary search is efficient, but we need to sort the

vector in the first place so that we can use binary

search

◼ Many different algorithms out there...

◼ We saw insertion sort (and read about bubble

sort)

◼ Let’s look at merge sort

◼ Another example of the “divide and conquer”

approach (like binary search) but using recursion

Which task fundamentally requires less work: sort a length 1000

array, or merge* two length 500 sorted arrays into one?

*Merge two sorted arrays so that the resultant array is sorted (not

concatenate two arrays)

A. Sort B. Merge C. The same

Comparison counting

How many comparisons (between elements) are required to run

insertion sort on the following vector?

[9, 13, 24, 96, 12, 18, 56]

A. 6

B. 7

C. 12

D. 21

The central sub-problem is the merging of two

sorted arrays into one single sorted array

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 7565

12 33 4535

15 42 6555 75

x:

y:

z:

1

1

1

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) ???

12 33 4535

15 42 6555 75

12

x:

y:

z:

1

1

1

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) YES

12 33 4535

15 42 6555 75

12

x:

y:

z:

2

1

2

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) ???

12 33 4535

15 42 6555 75

12 15

x:

y:

z:

2

1

2

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) NO

12 33 4535

15 42 6555 75

12 15

x:

y:

z:

2

2

3

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) ???

12 33 4535

15 42 6555 75

12 15 33

x:

y:

z:

2

2

3

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) YES

12 33 4535

15 42 6555 75

12 15 33

x:

y:

z:

3

2

4

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) ???

12 33 4535

15 42 6555 75

12 15 3533

x:

y:

z:

3

2

4

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) YES

12 33 4535

15 42 6555 75

12 15 3533

x:

y:

z:

4

2

5

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) ???

12 33 4535

15 42 6555 75

12 15 3533 42

x:

y:

z:

4

2

5

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) NO

12 33 4535

15 42 6555 75

12 15 3533 42

x:

y:

z:

4

3

6

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) ???

12 33 4535

15 42 6555 75

12 15 3533 42 45

x:

y:

z:

4

3

6

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) YES

12 33 4535

15 42 6555 75

12 15 3533 42 45

x:

y:

z:

5

3

7

ix:

iy:

iz:

Merge

ix > 4

12 33 4535

15 42 6555 75

12 15 3533 42 45 55

x:

y:

z:

5

3

7

ix:

iy:

iz:

Merge

ix > 4: take y(iy)

12 33 4535

15 42 6555 75

12 15 3533 42 45 55

x:

y:

z:

5

4

8

ix:

iy:

iz:

Merge

iy <= 5

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 65

x:

y:

z:

5

4

8

ix:

iy:

iz:

Merge

iy <= 5

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 65

x:

y:

z:

5

5

9

ix:

iy:

iz:

Merge

iy <= 5

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 7565

x:

y:

z:

5

5

9

ix:

iy:

iz:

Merge

iy <= 5

function z = merge(x,y)

nx = length(x); ny = length(y);

z = zeros(1, nx+ny);

ix = 1; iy = 1; iz = 1;

function z = merge(x,y)

nx = length(x); ny = length(y);

z = zeros(1, nx+ny);

ix = 1; iy = 1; iz = 1;

while ix<=nx && iy<=ny

end

% Deal with remaining values in x or y

function z = merge(x,y)

nx = length(x); ny = length(y);

z = zeros(1, nx+ny);

ix = 1; iy = 1; iz = 1;

while ix<=nx && iy<=ny

if x(ix) <= y(iy)

z(iz)= x(ix); ix=ix+1; iz=iz+1;

else

z(iz)= y(iy); iy=iy+1; iz=iz+1;

end

end

% Deal with remaining values in x or y

function z = merge(x,y)

nx = length(x); ny = length(y);

z = zeros(1, nx+ny);

ix = 1; iy = 1; iz = 1;

while ix<=nx && iy<=ny

if x(ix) <= y(iy)

z(iz)= x(ix); ix=ix+1; iz=iz+1;

else

z(iz)= y(iy); iy=iy+1; iz=iz+1;

end

end

while ix<=nx % copy remaining x-values

z(iz)= x(ix); ix=ix+1; iz=iz+1;

end

while iy<=ny % copy remaining y-values

z(iz)= y(iy); iy=iy+1; iz=iz+1;

end

Merge sort: Motivation

If I have two helpers, I’d…

• Give each helper half the array to
sort

• Then I get back the sorted
subarrays and merge them.

Cost of dividing work

Suppose each comparison we make

costs $1

Given a vector with N elements,

◼ Insertion sort costs $N(N-1)/2

◼ Merge costs $(N-1)

(worst case)

Consider a vector with 8 elements

◼ Sorting by ourselves: $26

◼ Sorting by delegating work:

◼ Left delegate (4 elements): $6

◼ Right delegate (4 elements): $6

◼ Merge (8 elements): $7

◼ Profit: $7!

Merge sort: Motivation

What if those two helpers
each had two sub-helpers?

If I have two helpers, I’d…

• Give each helper half the array to
sort

• Then I get back the sorted
subarrays and merge them.

And the sub-helpers each had
two sub-sub-helpers? And…

Subdivide the sorting task

J NR CP DF LA QB KM GH E

A QB KM GH E J NR CP DF L

Subdivide again

A QB KM GH E J NR CP DF L

M GH E A QB K P DF L J NR C

And again

M GH E A QB K P DF L J NR C

M GH E A QB K P DF L J NR C

And one last time

J NR CP DF LA QB KM GH E

Now merge

G ME H A QB K D PF L J NC R

J NR CP DF LA QB KM GH E

And merge again

H ME G K QA B L PD F N RC J

G ME H A QB K D PF L J NC R

And again

M QH KE GA B P RL NF JC D

H ME G K QA B L PD F N RC J

And one last time

M QH KE GA B P RL NF JC D

E FC DA B J KG H N PL M Q R

Done!

E FC DA B J KG H N PL M Q R

function y = mergeSort(x)

% x is a vector. y is a vector

% consisting of the values in x

% sorted from smallest to largest.

n = length(x);

if (task is trivial)

% Base case

else

% Divide work

% Delegate subproblems

% Merge results

end

function y = mergeSort(x)

% x is a vector. y is a vector

% consisting of the values in x

% sorted from smallest to largest.

n = length(x);

if n==1

y = x;

else

% Divide work

% Delegate subproblems

% Merge results

end

function y = mergeSort(x)

% x is a vector. y is a vector

% consisting of the values in x

% sorted from smallest to largest.

n = length(x);

if n==1

y = x;

else

m = floor(n/2);

yL = mergeSort(x(1:m));

yR = mergeSort(x(m+1:n));

y = merge(yL,yR);

end

function y=mergeSort(x)

n=length(x);

if n==1

y=x;

else

m=floor(n/2);

yL=mergeSort(x(1:m));

yR=mergeSort(x(m+1:n));

y=merge(yL,yR);

end

function y=mergeSort(x)

n=length(x);

if n==1

y=x;

else

m=floor(n/2);

yL=mergeSort(x(1:m));

yR=mergeSort(x(m+1:n));

y=merge(yL,yR);

end

function y=mergeSort(x)

n=length(x);

if n==1

y=x;

else

m=floor(n/2);

yL=mergeSort(x(1:m));

yR=mergeSort(x(m+1:n));

y=merge(yL,yR);

end

How do merge sort and insertion sort compare?

◼ Insertion sort: (worst case) makes k comparisons to insert an
element in a sorted array of k elements. For an array of length N:

1+2+…+(N-1) = N(N-1)/2, say N2 for big N

◼ Merge sort:

function y = mergeSort(x)

% x is a vector. y is a vector

% consisting of the values in x

% sorted from smallest to largest.

n = length(x);

if n==1

y = x;

else

m = floor(n/2);

yL = mergeSort(x(1:m));

yR = mergeSort(x(m+1:n));

y = merge(yL,yR);

end

All the comparisons between
vector values are done in merge

Merge sort: about log2(N) “levels”;

about N comparisons each level

J NR CP DF LA QB KM GH E

How do merge sort and insertion sort compare?

◼ Insertion sort: (worst case) makes i comparisons to insert an

element in a sorted array of i elements. For an array of length N:

1+2+…+(N-1) = N(N-1)/2, say N2 for big N

◼ Merge sort: N· log2(N)

◼ Insertion sort is done in-place; merge sort (recursion) requires

extra memory (call frames plus merge area)

See compareInsertMerge.m

How to choose??

◼ Depends on application

◼ Merge sort is especially good for sorting large data sets

◼ Easily adapted to work with files if data is too big for memory

◼ Sort “stability” matters for object handles (elements may compare
equal, but are actually distinct)

◼ Insertion, Merge are intrinsically stable. QuickSort is not, but MATLAB’s
sort() does extra work to stabalize

◼ Insertion sort is “order N2” at worst case, but what about an average
case?

◼ Insertion good for “fixing” a mostly sorted array, or adding just a few new
elements

What we learned…

◼ Develop/implement algorithms for problems

◼ Develop programming skills

◼ Design, implement, document, test, and debug

◼ Programming “tool bag”

◼ Functions for reducing redundancy

◼ Control flow (if-else; loops)

◼ Recursion

◼ Data structures, type

◼ Graphics

◼ File handling

What we learned… (cont’d)

◼ Applications and concepts

◼ Image processing

◼ Object-oriented programming—custom type

◼ Sorting and searching (you should know the algorithms

covered)

◼ Approximation and error

◼ Simulation, sensitivity analysis

◼ Computational effort and efficiency

Where to go from here?

◼ Mathworks.com – Many free tutorials available on specific topics,
e.g., signal processing, Simulink, …, etc.

◼ More detailed intro to scientific and engineering uses: “Getting

Started with MATLAB” by Rudra Pratap. Excellent for independent, non-

course-based learning

◼ Just play, i.e., experiment, with MATLAB programs! Many

programs available in MATLAB “Community” forum “File

Exchange”

Some courses for future consideration

◼ ENGRD/CS 2110 Object-oriented programming and data
structure

◼ CS 2111 Programming practicum

◼ CS 2800 Discrete Math (logic, proof, probability theory)

◼ CS 3220 Computational Mathematics for Computer Science

◼ Short language courses (e.g., Python, C++)

Highly recommended
companion to CS2110

Computing gives us insight into a problem

◼ Computing is not about getting one answer!

◼ We build models and write programs so that we can

“play” with the models and programs, learning—gaining

insights—as we vary the parameters and assumptions

◼ Good models require domain-specific knowledge (and

experience)

◼ Good programs …

◼ are correct and have been thoroughly tested

◼ are modular and cleanly organized

◼ are well-documented

◼ use appropriate data structures and algorithms

◼ are reasonably efficient in time and memory

