
◼ Previous Lecture:
◼ Recursion (Ch. 14)

◼ Today, Lecture 27:
◼ Algorithms for sorting and efficiency analysis (Ch. 8)

◼ Insertion Sort algorithm

◼ See Insight §8.2 for the Bubble Sort algorithm

◼ Algorithms for searching and analysis (Ch. 9)
◼ Linear search (review)

◼ Binary search

◼ Announcements:
◼ Test 2B submissions due today, 4:30pm EDT

◼ Since Tues 5/12 is the last day of classes, the Tues discussion sections will be converted to 
open office hrs.  All students are welcome (Zoom links will be posted to Canvas).

◼ Project 6 due Tues 11pm EDT.  Remember academic integrity!

◼ Regular office/consulting hours end on Tues.  See Canvas and course website for Study 
period office/consulting hours

◼ Final exam: “2hr” take-home, 48hr submission window.  Mon, 5/18, 9am

◼ Please complete course evaluations – worth extra point on Final



Sorting data allows us to search more easily

Place Bib Name Official Time State Country Ctz

1 F7 Tune, Dire 2:25:25 ETH

2 F8 Biktimirova, Alevtina 2:25:27 RUS

3 F4 Jeptoo, Rita 2:26:34 KEN

4 F2 Prokopcuka, Jelena 2:28:12 LAT

5 F5 Magarsa, Askale Tafa 2:29:48 ETH

6 F9 Genovese, Bruna 2:30:52 ITA

7 F12 Olaru, Nuta 2:33:56 ROM

8 F6 Guta, Robe Tola 2:34:37 ETH

9 F1 Grigoryeva, Lidiya 2:35:37 RUS

10 F35 Hood, Stephanie A. 2:44:44 IL USA CAN

11 F14 Robson, Denise C. 2:45:54 NS CAN

12 F11 Chemjor, Magdaline 2:46:25 KEN

13 F101 Sultanova-Zhdanova, Firaya 2:47:17 FL USA RUS

14 F15 Mayger, Eliza M. 2:47:36 AUS

15 F24 Anklam, Ashley A. 2:48:43 MN USA

2008 Boston Marathon Top Women Finishers

Name Score Grade

Jorge 92.1

Ahn 91.5

Oluban 90.6

Chi 88.9

Minale 88.1

Bell 87.3



There are many algorithms for sorting

◼ Insertion Sort (to be discussed today)

◼ Bubble Sort (read Insight §8.2)

◼ Merge Sort (to be discussed next lecture)

◼ Quick Sort (a variant used by Matlab’s built-in sort function)

◼ Each has advantages and disadvantages.  Some algorithms are faster (time-

efficient) while others are memory-efficient

◼ Great opportunity for learning how to analyze programs and algorithms!



The Insertion Process

◼ Given a sorted array x, insert a number y such 

that the result is sorted

2 3 6 98

2 3 6 9 8

sorted



2 3 6 9 8

2 3 6 98 Just swap 8 & 9

Insertion sorted

one insert 
process

Insert 8 into the sorted segment



2 3 6 98

2 3 6 9 8

2 3 6 98

Insertion

sorted

4

Insert 4 into the sorted segment



42 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:

swap 9 & 4

Insertion
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2 3 6 98 4

2 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:

swap 8 & 4

Insertion
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2 3 6 98 4

2 3 6 984

2 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:

swap 6 & 4

Insertion



4

2 3 6 98 4

2 3 6 984

2 3 6 984

2 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:

DONE!  No more swaps.

Insertion

See function Insert for the insert process

one insert 
process

one insert 
process



Sort vector x using the Insertion Sort algorithm

Insert x(2):  x(1:2) = Insert(x(1:2))

x

Need to start with a sorted subvector.  How do you find one?

Insert x(3):  x(1:3) = Insert(x(1:3))

Insert x(4):  x(1:4) = Insert(x(1:4))

Insert x(5):  x(1:5) = Insert(x(1:5))

Insert x(6):  x(1:6) = Insert(x(1:6))

Length 1 subvector is “sorted”

insertionSortSimple.m



Contract between Insert and InsertionSort

Insert

◼ Assumes all but the last element 

of x is already sorted

◼ Returns a fully-sorted array (one 

more element sorted than 

given)

InsertionSort (driver)

◼ Must only call Insert() on a 

subarray with a pre-sorted prefix

◼ Has a bigger pre-sorted subarray 

to pass to Insert() next time –

progress is made each iteration

therefore

Size of sorted prefix grows each time.  
When it equals the size of the original 

array, the task is done



How much “work” is insertion sort?

◼ In the worst case, make k comparisons to insert an element in a 
sorted array of k elements.  



4

2 3 6 98 4

2 3 6 984

2 3 6 984

2 3 6 98

2 3 6 9 8

2 3 6 98

Insert into sorted array of 

length 4

Insertion

one insert 
process

one insert 
process

Insert into sorted array of 

length 5



How much “work” is insertion sort?

◼ In the worst case, make k comparisons to insert an element in a 
sorted array of k elements.  For an array of length N:

1 + 2 + … + (N-1) = 
𝑁(𝑁−1)

2
, say N2 for big N

InsertionSort.m



Checkpoint question: N2 performance

Suppose it takes 5ms to sort an array with 100 elements using 

Insertion Sort.  How long would you expect sorting 1000 elements 

to take?

A.  25ms

B.  50ms

C.  500ms

D.  5000ms

E.  1e6 ms



Efficiency considerations

◼ Worst case, best case, average case

◼ Use of subfunction incurs an “overhead”

◼ Memory use and access

◼ Example:  Rather than directing the insert process to a subfunction, 
have it done “in-line.” 

◼ Also, Insertion sort can be done “in-place,” i.e., using “only” the 
memory space of the original vector.



function x = InsertionSortInplace(x)

% Sort vector x in ascending order with insertion sort

n = length(x);

for i= 1:n-1

% Sort x(1:i+1) given that x(1:i) is sorted

end



function x = InsertionSortInplace(x)

% Sort vector x in ascending order with insertion sort

n = length(x);

for i= 1:n-1

% Sort x(1:i+1) given that x(1:i) is sorted

j= i;

while

% swap x(j+1) and x(j)

j= j-1;

end

end



A note on optimization

◼ “Inlining” multiple pieces of an algorithm should not be your go-to 

strategy

◼ It’s easier to understand (and verify) small pieces that do a simple task 

than monolithic code that does a complicated task

◼ Better communication, less buggy

◼ Hard to predict when it will actually be faster

◼ Large code has a performance cost in addition to a maintenance cost

◼ Measuring performance not as easy as it sounds

◼ Compilers can do this automatically

◼ Auto-inlining will reveal opportunities for in-place array edits



Sort an array of objects

◼ Given x, a 1-d array of Interval references, sort x according to the 

widths of the Intervals from narrowest to widest

◼ Use the insertion sort algorithm

◼ How much of our code needs to be changed?

A.  No change

B.  One statement

C.  About half the code

D.  Most of the code



Searching for an item in an unorganized collection?  

◼ May need to look through the whole collection to find the target 

item

◼ E.g., find value x in vector v

◼ Linear search

v

x



% Linear Search

% f is index of first occurrence  

%   of value x in vector v.

% f is -1 if x not found.

k= 1;

while  k<=length(v) && v(k)~=x 

k= k + 1;

end

if  k>length(v)  

f= -1; % signal for x not found

else

f= k;

end
12 1535 33 42 45v

x 31



% Linear Search

% f is index of first occurrence of value x in vector v.

% f is -1 if x not found.

k= 1;

while  k<=length(v) && v(k)~=x 

k= k + 1;

end

if  k>length(v)  

f= -1; % signal for x not found

else

f= k;

end



% Linear Search

% f is index of first occurrence  

%   of value x in vector v.

% f is -1 if x not found.

k= 1;

while  k<=length(v) && v(k)~=x 

k= k + 1;

end

if  k>length(v)  

f= -1; % signal for x not found

else

f= k;

end
12 15 3533 42 45v

x 31 What if v is sorted?



An ordered (sorted) list

The Manhattan phone 

book has 1,000,000+ 

entries.

How is it possible to 

locate a name by 

examining just a tiny, 

tiny fraction of those 

entries?



Key idea of “phone book search”:  repeated halving

To find the page containing Pat Reef’s number…

while  (Phone book is longer than 1 page)

Open to the middle page.

if  “Reef” comes before the first entry,

Rip and throw away the 2nd half.

else

Rip and throw away the 1st half.

end

end



What happens to the phone book length?

Original:     3000 pages

After 1 rip:  1500 pages

After 2 rips:  750 pages

After 3 rips:  375 pages

After 4 rips:  188 pages

After 5 rips:   94 pages

:

After 12 rips:   1 page



Binary Search

Repeatedly halving the size of the “search space” is 
the main idea behind the method of binary search.

An item in a sorted array of length n can be 
located with just log2 n comparisons.

“Savings” is significant! n    log2(n)

100 7

1000 10

10000 13



What is true of the half we keep?

◼ Let L be the leftmost page we keep (may be 0, aka front cover)

◼ Let R be the page after the last one we keep (might be 

length(v)+1, aka back cover)

◼ Then the name we are looking for is >= the first name on page L, 

and < the first name on page R

◼ When only one page left (R = L+1),

◼ If name is in book, it will be on page L

◼ If name is not in book, it should be inserted after some names already on 

page L



12 15 3533 42 45 51 7362 75 86 98

Binary search:  target x = 70

v

L:

Mid:

R:

0

6

13

1  2  3  4  5  6  7  8  9 10 11 12

v(Mid) <= x

So throw away the 
left half…



12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

6

9

13

1  2  3  4  5  6  7  8  9 10 11 12

x < v(Mid)

So throw away the 
right half…

Binary search:  target x = 70



12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

6

7

9

1  2  3  4  5  6  7  8  9 10 11 12

v(Mid) <= x

So throw away the 
left half…

Binary search:  target x = 70



12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

7

8

9

1  2  3  4  5  6  7  8  9 10 11 12

v(Mid) <= x

So throw away the 
left half…

Binary search:  target x = 70



12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

8

8

9

1  2  3  4  5  6  7  8  9 10 11 12

Done because
R-L = 1

Binary search:  target x = 70



function L = binarySearch(x, v)

% Find position after which to insert x. v(1)<…<v(end). 

% L is the index such that v(L) <= x < v(L+1);

% L=0 if x<v(1).  If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).

% Since x may not be in v, initially set ...

L=0;  R=length(v)+1;

% Keep halving [L..R] until R-L is 1,

%   always keeping  v(L) <= x < v(R)

while  R ~= L+1 

m= floor((L+R)/2);  % middle of search window

if

else

end

end



function L = binarySearch(x, v)

% Find position after which to insert x. v(1)<…<v(end). 

% L is the index such that v(L) <= x < v(L+1);

% L=0 if x<v(1).  If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).

% Since x may not be in v, initially set ...

L=0;  R=length(v)+1;

% Keep halving [L..R] until R-L is 1,

%   always keeping  v(L) <= x < v(R)

while  R ~= L+1 

m= floor((L+R)/2);  % middle of search window

if  v(m) <= x

L= m;

else

R= m;

end

end

This version is different 
from that in Insight



function L = binarySearch(x, v)

% Find position after which to insert x. v(1)<…<v(end). 

% L is the index such that v(L) <= x < v(L+1);

% L=0 if x<v(1).  If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).

% Since x may not be in v, initially set ...

L=0;  R=length(v)+1;

% Keep halving [L..R] until R-L is 1,

%   always keeping  v(L) <= x < v(R)

while  R ~= L+1 

m= floor((L+R)/2);  % middle of search window

if  v(m) <= x

L= m;

else

R= m;

end

end

20 30 40 46 50 52 68 70
0   1   2    3    4    5   6    7   8  9

Play with showBinarySearch.m



What happens if the values in the sorted vector are 

not unique?  Say, the target value is in the vector 

and that value appears in the vector multiple 

times…

A.  The first occurrence is identified  

C.  Any one of the occurrences may be identified

B.  The last occurrence is identified

D.  Binary search doesn’t work



Binary search is efficient, but we need to sort the 

vector in the first place so that we can use binary 

search

◼ Many different algorithms out there...

◼ We saw insertion sort (and read about bubble 

sort)

◼ Let’s look at  merge sort

◼ An example of the “divide and conquer” 

approach using recursion


