- Previous Lecture:
 - Recursion (Ch. 14)

- Today, Lecture 27:
 - Algorithms for sorting and efficiency analysis (Ch. 8)
 - Insertion Sort algorithm
 - See Insight §8.2 for the Bubble Sort algorithm
 - Algorithms for searching and analysis (Ch. 9)
 - Linear search (review)
 - Binary search

- Announcements:
 - Test 2B submissions due today, 4:30pm EDT
 - Since Tues 5/12 is the last day of classes, the Tues discussion sections will be converted to open office hrs. All students are welcome (Zoom links will be posted to Canvas).
 - Project 6 due Tues 11pm EDT. Remember academic integrity!
 - Regular office/consulting hours end on Tues. See Canvas and course website for Study period office/consulting hours
 - Final exam: “2hr” take-home, 48hr submission window. Mon, 5/18, 9am
 - Please complete course evaluations – worth extra point on Final
Sorting data allows us to search more easily

<table>
<thead>
<tr>
<th>Name</th>
<th>Official Time</th>
<th>State</th>
<th>Country</th>
<th>Ctz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tune, Dire</td>
<td>2:25:25</td>
<td>ETH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biktimirova, Alevtina</td>
<td>2:25:27</td>
<td>RUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeptoo, Rita</td>
<td>2:26:34</td>
<td>KEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prokopcuka, Jelena</td>
<td>2:28:12</td>
<td>LAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magarsa, Askale Tafa</td>
<td>2:29:48</td>
<td>ETH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genovese, Bruna</td>
<td>2:30:52</td>
<td>ITA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olaru, Nuta</td>
<td>2:33:56</td>
<td>ROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guta, Robe Tola</td>
<td>2:34:37</td>
<td>ETH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grigoryeva, Lidiya</td>
<td>2:35:37</td>
<td>RUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hood, Stephanie A.</td>
<td>2:44:44</td>
<td>IL</td>
<td>USA</td>
<td>CAN</td>
</tr>
<tr>
<td>Robson, Denise C.</td>
<td>2:45:54</td>
<td>NS</td>
<td>CAN</td>
<td></td>
</tr>
<tr>
<td>Chemjor, Magdaline</td>
<td>2:46:25</td>
<td>KEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sultanova-Zhdanova, Firaya</td>
<td>2:47:17</td>
<td>FL</td>
<td>USA</td>
<td>RUS</td>
</tr>
<tr>
<td>Mayger, Eliza M.</td>
<td>2:47:36</td>
<td>AUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anklam, Ashley A.</td>
<td>2:48:43</td>
<td>MN</td>
<td>USA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jorge</td>
<td>92.1</td>
</tr>
<tr>
<td>Ahn</td>
<td>91.5</td>
</tr>
<tr>
<td>Oluban</td>
<td>90.6</td>
</tr>
<tr>
<td>Chi</td>
<td>88.9</td>
</tr>
<tr>
<td>Minale</td>
<td>88.1</td>
</tr>
<tr>
<td>Bell</td>
<td>87.3</td>
</tr>
</tbody>
</table>
There are many algorithms for sorting

- Insertion Sort (to be discussed today)
- Bubble Sort (read Insight §8.2)
- Merge Sort (to be discussed next lecture)
- Quick Sort (a variant used by Matlab’s built-in sort function)

Each has advantages and disadvantages. Some algorithms are faster (time-efficient) while others are memory-efficient

Great opportunity for learning how to analyze programs and algorithms!
The Insertion Process

- Given a sorted array x, insert a number y such that the result is sorted
Insertion

one insert process

\[\begin{array}{c}
2 & 3 & 6 & 9 & 8 \\
\end{array} \]

Insert 8 into the sorted segment

\[\begin{array}{c}
2 & 3 & 6 & 8 & 9 \\
\end{array} \]

Just swap 8 & 9
Insertion

Insert 4 into the sorted segment
Insertion

2 3 6 9 8

Compare adjacent components:
swap 9 & 4

2 3 6 8 9

2 3 6 8 9 4
Insertion

Compare adjacent components:
swap 8 & 4
Insertion

Compare adjacent components:
swap 6 & 4
Insertion

one insert process

Compare adjacent components:
DONE! No more swaps.

See function **Insert** for the insert process
Sort vector \mathbf{x} using the Insertion Sort algorithm

Need to start with a sorted subvector. How do you find one?

\mathbf{x}

Length 1 subvector is “sorted”

$\text{Insert } \mathbf{x}(2): \mathbf{x}(1:2) = \text{Insert}(\mathbf{x}(1:2))$

$\text{Insert } \mathbf{x}(3): \mathbf{x}(1:3) = \text{Insert}(\mathbf{x}(1:3))$

$\text{Insert } \mathbf{x}(4): \mathbf{x}(1:4) = \text{Insert}(\mathbf{x}(1:4))$

$\text{Insert } \mathbf{x}(5): \mathbf{x}(1:5) = \text{Insert}(\mathbf{x}(1:5))$

$\text{Insert } \mathbf{x}(6): \mathbf{x}(1:6) = \text{Insert}(\mathbf{x}(1:6))$

insertionSortSimple.m
Contract between Insert and InsertionSort

Insert
- Assumes all but the last element of x is already sorted
- Returns a fully-sorted array (one more element sorted than given)

InsertionSort (driver)
- Must only call Insert() on a subarray with a pre-sorted prefix
- Has a bigger pre-sorted subarray to pass to Insert() next time – progress is made each iteration

Size of sorted prefix grows each time. When it equals the size of the original array, the task is done
How much “work” is insertion sort?

- In the worst case, make k comparisons to insert an element in a sorted array of k elements.
Insertion

one insert process

Insert into sorted array of length 4

2 3 6 9 8
2 3 6 8 9

one insert process

Insert into sorted array of length 5

2 3 6 8 9 4
2 3 6 8 4 9
2 3 6 4 8 9
2 3 4 6 8 9
How much “work” is insertion sort?

- In the worst case, make k comparisons to insert an element in a sorted array of k elements. For an array of length N:

\[
1 + 2 + \ldots + (N-1) = \frac{N(N-1)}{2}, \text{ say } N^2 \text{ for big } N
\]
Checkpoint question: N^2 performance

Suppose it takes 5ms to sort an array with 100 elements using Insertion Sort. How long would you expect sorting 1000 elements to take?

A. 25ms
B. 50ms
C. 500ms
D. 5000ms
E. 1e6 ms
Efficiency considerations

- Worst case, best case, average case
- Use of subfunction incurs an “overhead”
- Memory use and access

Example: Rather than directing the insert process to a subfunction, have it done “in-line.”

Also, Insertion sort can be done “in-place,” i.e., using “only” the memory space of the original vector.
function x = InsertionSortInplace(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i = 1:n-1
 % Sort x(1:i+1) given that x(1:i) is sorted
end
function x = InsertionSortInplace(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i = 1:n-1
 % Sort x(1:i+1) given that x(1:i) is sorted
 j = i;
 while
 % swap x(j+1) and x(j)
 j = j-1;
 end
end
A note on optimization

- “Inlining” multiple pieces of an algorithm should *not* be your go-to strategy
 - It’s easier to understand (and verify) small pieces that do a simple task than monolithic code that does a complicated task
 - Better communication, less buggy
 - Hard to predict when it will actually be faster
 - Large code has a performance cost in addition to a maintenance cost
 - Measuring performance not as easy as it sounds
- Compilers can do this automatically
 - Auto-inlining will reveal opportunities for in-place array edits
Sort an array of objects

- Given \(x \), a 1-d array of \texttt{Interval} references, sort \(x \) according to the widths of the \texttt{Intervals} from narrowest to widest
- Use the insertion sort algorithm
- How much of our code needs to be changed?

A. No change
B. One statement
C. About half the code
D. Most of the code
Searching for an item in an unorganized collection?

- May need to look through the whole collection to find the target item
- E.g., find value x in vector v

- Linear search
% Linear Search
% f is index of first occurrence of value x in vector v.
% f is -1 if x not found.
k = 1;
while k <= length(v) & v(k) ~= x
 k = k + 1;
end
if k > length(v)
 f = -1; % signal for x not found
else
 f = k;
end

v = [12 35 33 15 42 45]
x = [31]
% Linear Search
% f is index of first occurrence of value x in vector v.
% f is -1 if x not found.

k = 1;
while k <= length(v) && v(k) ~= x
 k = k + 1;
end
if k > length(v)
 f = -1; % signal for x not found
else
 f = k;
end

n comparisons against the target are needed in worst case,
\[n = \text{length}(v) \].
% Linear Search
% f is index of first occurrence
% of value x in vector v.
% f is -1 if x not found.

k = 1;
while k <= length(v) && v(k) ~= x
 k = k + 1;
end
if k > length(v)
 f = -1; % signal for x not found
else
 f = k;
end

What if v is sorted?
An ordered (sorted) list

The Manhattan phone book has 1,000,000+ entries.

How is it possible to locate a name by examining just a tiny, tiny fraction of those entries?
Key idea of “phone book search”: repeated halving

To find the page containing Pat Reef’s number...

while (Phone book is longer than 1 page)
 Open to the middle page.
 if “Reef” comes before the first entry,
 Rip and throw away the 2nd half.
 else
 Rip and throw away the 1st half.
end
end
What happens to the phone book length?

Original: 3000 pages
After 1 rip: 1500 pages
After 2 rips: 750 pages
After 3 rips: 375 pages
After 4 rips: 188 pages
After 5 rips: 94 pages
After 12 rips: 1 page
Binary Search

Repeatedly halving the size of the “search space” is the main idea behind the method of binary search.

An item in a sorted array of length \(n \) can be located with just \(\log_2 n \) comparisons.

“Savings” is significant!

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\log_2(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>10000</td>
<td>13</td>
</tr>
</tbody>
</table>
What is true of the half we keep?

- Let L be the leftmost page we keep (may be 0, aka front cover)
- Let R be the page after the last one we keep (might be $\text{length}(v)+1$, aka back cover)
- Then the name we are looking for is \geq the first name on page L, and $< \text{the first name on page } R$
- When only one page left ($R = L+1$),
 - If name is in book, it will be on page L
 - If name is not in book, it should be inserted after some names already on page L
Binary search: target \(x = 70 \)

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\text{v} & \boxed{12} & 15 & 33 & 35 & 42 & 45 & 51 & 62 & 73 & 75 & 86 & 98 \\
\end{array}
\]

\(\text{L: } 0 \quad \text{Mid: } 6 \quad \text{R: } 13 \)

\(\text{v(Mid)} \leq x \)

So throw away the left half...
Binary search: target $x = 70$

$x < v(Mid)$

So throw away the right half...
Binary search: target $x = 70$

So throw away the left half...
Binary search: target \(x = 70 \)

So throw away the left half...
Binary search: target $x = 70$

L: 8
Mid: 8
R: 9

Done because $R - L = 1$
function L = binarySearch(x, v)
\% Find position after which to insert x. v(1)<...<v(end).
\% L is the index such that v(L) <= x < v(L+1);
\% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

\% Maintain a search window [L..R] such that v(L)<=x<v(R).
\% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

\% Keep halving [L..R] until R-L is 1,
\% always keeping v(L) <= x < v(R)
while R ~= L+1
 m = floor((L+R)/2); \% middle of search window
 if

 else

 end
end
function \(L = \text{binarySearch}(x, v) \)
% Find position after which to insert \(x \). \(v(1)<...<v(\text{end}) \).
% \(L \) is the index such that \(v(L) \leq x < v(L+1) \);
% \(L=0 \) if \(x<v(1) \). If \(x>v(\text{end}) \), \(L=\text{length}(v) \) but \(x\neq v(L) \).

% Maintain a search window \([L..R]\) such that \(v(L)\leq x < v(R) \).
% Since \(x \) may not be in \(v \), initially set ...
\(L=0; \ R=\text{length}(v)+1; \)

% Keep halving \([L..R]\) until \(R-L \) is 1,
% always keeping \(v(L) \leq x < v(R) \)
while \(R \neq L+1 \)
 \(m= \text{floor}((L+R)/2); \) % middle of search window
 if \(v(m) \leq x \)
 \(L= m; \)
 else
 \(R= m; \)
 end
end

This version is different from that in Insight
function L = binarySearch(x, v)
% Find position after which to insert x. v(1)<...<v(end).
% L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

% Keep halving [L..R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1
 m= floor((L+R)/2); % middle of search window
 if v(m) <= x
 L= m;
 else
 R= m;
 end
end

Play with showBinarySearch.m
What happens if the values in the sorted vector are not unique? Say, the target value is in the vector and that value appears in the vector multiple times…

A. The first occurrence is identified
B. The last occurrence is identified
C. Any one of the occurrences may be identified
D. Binary search doesn’t work
Binary search is efficient, but we need to sort the vector in the first place so that we can use binary search

- Many different algorithms out there...
- We saw insertion sort (and read about bubble sort)
- Let’s look at **merge sort**
- An example of the “divide and conquer” approach using recursion