* Previous lecture:
— Array of objects
— Methods that handle a variable number of arguments
— Using a class in another

* Today’s lecture:

— Why use OOP!?

— Attributes (private, public) for properties and
methods

— Inheritance: extending a class

e Announcement:

— Project 5 due tonight
— Test 2B released Tue, May 5

* Review session Sunday, 2pm EDT
— Project 6, part A to be released Fri; due May 12

OOP ideas

* Aggregate variables/methods into an abstraction (a class) that
makes their relationship to one another explicit

* Object properties (data) need not be passed to instance
methods—only the object handle (reference) is passed. Useful for
large data sets!

OOQOP ideas

* Objects (instances of a class) are self-governing (protect and manage
themselves)

— Hide details from clients while exposing the services they need

— Don’t allow clients to invalidate data and break those services

Engineering software # software engineering

Engineering software Software engineering
* Solve a technical problem or provide * Build large, reliable systems that
insight into data operate continuously
* Be confident that answers are correct * Used mostly by other people
— clear, documented code; testing » Make components easy to (re)use
* Used mostly by yourself or your team correctly, hard to use incorrectly

The design of code becomes at least as
Important as its output

Restricting access to properties and methods

Hide implementation details from “outside parties” who do not need
to know how things work—depend on behavior, not representation

E.g., we decide that users of Interval class cannot directly change 1eft
and right once the object has been created. Force users to use the

provided methods—scale(), shift(), etc.—to cause changes in the
object data

Protect data from unanticipated user action—keep properties self-
consistent

Information hiding is very important in large projects
— Helps avoid brittle code

ClaSSde'F Inter‘val < handle % Inter\Val exper\iments

: for k=1:5
properties
leat fprintf('Trial %d\n', k)
right a= Interval(3, 3+rand*5);
end b= Interval(6, 6+rand*3);
methods disp(a)
function scale(self,) disp(b)
c= a.overlap(b);
end . .
if ~isempty(c)
function Inter = overlap(self, other) fprintf('Overlap is ")
disp(c)
end else
disp('No overlap')
end end
pause
end
end

Example client code

A server class

Interval A client class
access
/1 \
access

access

Data that the client does not need to access should be protected: private
Provide a set of methods for public access.

The “client-server model”

Preserving relationships between properties

classdef Interval < handle

properties
left = 0;
right = @; % Invariant: right >= left
end
methods
function Inter = Interval(lt, rt)
if nargin ==
Inter.left= 1t;
Inter.right= rt;
end
end
end

end

Don't neglect the
default constructor
(if any); either pick a
sensible default state,
or make it so that
nothing works.

Constructor can be written to do error checking!

classdef Interval < handle
properties
left = 0;
right = @; % Invariant: right >= left
end

methods
function Inter = Interval(lt, rt)
if nargin == 2
if 1t <= rt
Inter.left= 1t;
Inter.right= rt;
else
error('Error at instantiation: left>right')
end
end
end

end
end

Should force users
(clients) to use code
provided in the class
to create an Interval
or to change its
property values once
the Interval has been
created.

E.g., if users cannot
directly set the
properties left and
right, then they
cannot accidentally
"mess up” an Interval.

Attributes for properties and methods

* public
— Client has access
— Default

° private

— Client cannot access

% Client code

r= Interval(4,6);
r.scale(5); %0K

r= Interval(4,14); % OK
r.right=14; % error
disp(r.right) %error

classdef Interval < handle
% An Interval has a left end and a right end

properties (Access=private)

d
left ss Ox\
ce .aaXe
- et AC (o
:ght poth © ces5 0% P
en 56" AC
methods

function Inter = Interval(lt, rt)
% Constructor: construct an Interval obj

Inter.left= It;
Inter.right=rt;
end

function scale(self, f)
% Scalasblwes :

w= self.right - self.left;

elf.right= self.left + w*f; s fhere \S
=N e €% xhe
rin ¥ X0 ake
\Iy\(\s OcC@SS 0 i p(‘N
end o\W O\lex*\ 25, eNe
end \)r‘09

classdef Interval < handle

PUinC “gette r-” meth OCI % An Interval has a left end and a right end
properties (Access=private)
* Provides client the eft
. right
ability to get a property end
Value methods
function Inter = Interval(lt, rt)
Inter.left= It;
Inter.right=rt;
end

$ Client code
r= Interval(4,6);

function It = getLeft(self)
% It is the interval’s left end

disp(r.left) % error It= self.left;
. end
disp(r.getLeft()) % OK function rt = getRight(self)

% rt is the interval’s right end
rt= self.right;
end

end
end

Public “setter” method

* Provides client the ability
to set a property value

* Don’t do it unless really
necessary! If you
implement public setters,
include error checking
(not shown here).

% Client code

r= Interval (4,6);
r.right= 9; % error
r.setRight (9) % OK

classdef Interval < handle
% An Interval has a left end and a right end

properties (Access=private)
left
right

end

methods
function Inter = Interval(lt, rt)
Inter.left= It;
Inter.right=rt;
end

function setLeft(self, It)

% the interval’s left end gets It
self.left=It;

end

function setRight(self, rt)

% the interval’s right end gets rt
self.right= rt;

end

end
end

Prefer to use available methods, even when within same class

classdef Interval < handle

properties (Access=private)

left; right
New Interval
end . | -
methods implementation

function Inter = Interval(lt, rt)

end

function It = getlLeft(self)
It = self.left;

end

function rt = getRight(self)
rt = self.right;
end

function w = getWidth(self)
w= self.getRight() - self.getLeft() ;

end
In here... code that
end always uses the getters
end & setters

classdef Interval < handle

properties (Access=private)
left; width
end

methods

function Inter = Interval(lt, rt)

end

function It = getLeft(self)
It = self.left;

end

function rt = getRight(self)

rt = self.getLeft() + self.getWidth();
end
function w = getWidth(self)
w= self.width ;
Rewrite old getters/setters |
... | add new getters/setters. BU |
end | everything else stays the same!

Cool! Happy clients!

.
[

end

end

Getters and setters: what have we achieved!?

* Getters let us change properties without changing interface

* Setters (or lack thereof) let us control how properties can change
— Read-only
— Methods that keep them “in sync” (e.g. shift(), scale(), ...)

— Error checking on attempts to write

* Both allow interactions to be “intercepted”
— Track how many times they are changed!?

— Break points when debugging

Quiz: access control

Which of these lines are legal?

A: None

B

1l

C:1&2

D: 1-3

E: All

E

classdef Square < handle
properties (Access=private)
s =1
end
methods (Access=public)
function obj = Square(side)
if nargin ==
obj.s = side;
end
end
function a = area(self)
a = self.s*self.s;
end
end
end

shape = Square(2);
al= shape.area();
a2= shape.s*shape.s;

shape.s= 1;

OOQOP ideas = Great for managing large projects

* Maximize code reuse

A fair die is...

classdef Die < handle
properties (Access=private)
sides=6;
top

end

methods
function D = Die(..)
function roll(..)
function disp(..)
function s = getSides(..)
function t = getTop(..)
end

methods (Access=private)
function setTop(..)

end

end

What about a trick die?

Separate classes—each has its own members

classdef Die < handle
properties (Access=private)
sides=6;
top

end

methods
function D = Die(..)
function roll(..)
function disp(..)
function s = getSides(..)
function t = getTop(..)
end

methods (Access=private)
function setTop(..)

end

end

classdef TrickDie < handle
properties (Access=private)
sides=6;
top
favoredFace
weight=1;
end
methods
function D = TrickDie(..)
function roll(..)
function disp(..)
function s = getSides(..)

function t = getTop(..)

function f = getFavoredFace(..) ..
function w = getWeight(..)

end

methods (Access=private)
function setTop(..)

end

end

Separate classes—each has its own members

classdef Die < handle
properties (Access=private)
sides=6;
top

end

methods
function D = Die(..)
function roll(..)
function disp(..)
function s = getSides(..)
function t = getTop(..)
end

methods (Access=private)
function setTop(..)

end

end

classdef TrickDie < handle
properties (Access=private)
sides=6;
top
favoredFace
weight=1;
end
methods
function D = TrickDie(..)
function roll(..)
function disp(..)
function s = getSides(..)

function t = getTop(..)

function f = getFavoredFace(..) ..
function w = getWeight(..)

end

methods (Access=private)
function setTop(..)

end

end

Can we get all the functionality of Die in TrickDie without re-
writing all the Die code in class TrickDie?

classdef Die < handle
properties (Access=private)
sides=6;
top

end

methods
function D = Die(..)
function roll(..)
function disp(..)
function s = getSides(..)
function t = getTop(..)
end

methods (Access=private)
function setTop(..)

end

end

classdef TrickDie < handle

“"Inherit” the components
of class Die

properties (Access=private)
favoredFace
weight=1;

end

methods
function D = TrickDie(...)
function f =getFavoredFace(..) ..
function w = getWeight(..)

end

end

Yes! Make TrickDie a subclass of Die

classdef Die < handle

properties (Access=private)

sides=6;

top
end
methods

function D = Die(..)
function roll(..)
function disp(..)

function s = getSides(..)

function t = getTop(..)
end

methods (Access=protected)

function setTop(..)
end
end

classde

TrickDie < Die

properties (Access=private)
favoredFace

weight=1;

end

methods

function D = TrickDie(...)
function f=getFavoredFace(..)..
function w = getWeight(..)

end

end

Inheritance

Inheritance relationships are shown in a class diagram, with the arrow pointing to the
parent class

[handle J [handle J
T T
[Die J [AbstractDie]
[TrickDie J [FairDie J [TrickDie J

An is-a relationship: the child is a more specific version of the parent. Eg., a trick
die is a die.

Multiple inheritance: can have multiple (direct) parents € e.g., Matlab
Single inheritance: can have one (direct) parent only € e.g., |ava

If relationship is “has a” or “can do”,
prefer composition to inheritance

Inheritance vocabulary

Allows programmer to derive a class from an existing one

* Existing class is called the parent class, or superclass

* Derived class is called the child class or subclass

* The child class inherits the (public and protected) members defined for the parent class

* Inherited trait can be accessed as though it was locally defined

Which components get “inherited’?

* public components get inherited

° private components exist in
object of child class, but cannot
be directly accessed in child
class = we say they are not
inherited

* Note the difference between
inheritance and existence!

A Die

' 167.32]

sides|6| top|2

setTop()
Die() getSides()

roll() getTop()
disp()

Which components get “inherited’?
A TrickDie

* public components get inherited [167324 |

° private components exist in sides|6| top|2
object of child class, but cannot | S€tToP{ »
. . . Di tSi
be directly accessed in child e() getsides()

class = we say they are not disp()
inherited favoredFace| 6
* Note the difference between weight | 6
inheritance and existence! TrickDie() disp()
getFavoredFace()

getWeight() roll()

protected attribute

* Attributes dictate which members get inherited

°* private

— Not inherited, can be accessed by local class only
°* public

— Inherited, can be accessed by all classes
° protected

— Inherited, can be accessed by subclasses

* Access: access as though defined locally

* All members from a superclass exist in the subclass, but the
private ones cannot be accessed directly—can be accessed
through inherited (public or protected) methods

>>d = Die(6) ;
>>td = TrickDie (2, 10, 6);

>2 %... more code in Command Window ...

classdef Die < handle
properties (Access=private)

1 sides=6;
d.setTop(3) and td.setTop(3) both tgp

en
work methods

function D = Die(..)

Neither d.setTop(3) nor td.setTop (3) function roll(..)

works function disp(..)
function s = getSides(..)

__ function t = getTop(..)
d.setTop (3) works but td.setTop (3) end
doesn’t methods (Access=protected)
function setTop(..)
end
end

Overriding methods

* Subclass can override definition of inherited method
* New method in subclass has the same name (but has different method body)
* Which method gets used??

The object that is used to invoke a method determines which version is used

* Since a TrickDie object is calling method roll, the TrickDie’s version of
roll is executed

* In other words, the method most specific to the type (class) of the object is
used

(Cell) Array of objects

* A cell array can reference objects of different classes
A{l}= Die();
A{2}= TrickDie(2,10); % OK

* A simple array can reference objects of only one single class
B(l)= Die()
B(2)= TrickDie(2,10); % ERROR

OOP in computing culture

&

A

D
2 Sun

microsystems

‘)
-
y

macOS Java

