* Previous lecture:
— File 1/O, sort

* Today’s lecture:

— Introduction to objects and classes

* Announcements:

— Try to finish Exercise || during DIS section ahead of
Thursday’s lecture.

— Test 2A will be released on Canvas at 4:30pm EDT
* No Piazza, Consulting Tue/Wed. OH available for projects

— Project 5 will be released tonight, due next Thurs

— Reminder: academic integrity

Different kinds of abstraction

* Packaging procedures (program instructions) into a function
— A program is a set of functions executed in the specified order
— Data is passed to (and from) each function

* Packaging data into an array or structure

— Elevates thinking
— Reduces the number of variables being passed to and from functions

* Packaging data, and the instructions that work on those data, into
an object
— A program is the interaction among objects

— Object-oriented programming (OOP) focuses on the design of data-
instructions groupings

A card game, developed in two ways

* Develop the * [dentify “objects” in the game
algorithm—the logic— and define each:
of the card game: — Card
— Set up a deck as an array * Properties: suit, rank
of cards. (First, choose * Actions: compare, show
representation of cards.) — Deck
— Shuffle the cards * Property: array of Cards
— Deal cards to players * Actions: shuffle, deal, get #cards left
— Evaluate each player’s — Hand ...
hand to determine — Player ...
winner

* Then write the game—the
Procedural programming: algorithm—using objects of
focus on the algorithm, i.e., the above “classes”

the procedures, necessary

for solving a problem

A card game, developed in two ways

* Develop the * [dentify “objects” in the game
algorithm—the logic— and define each:
of the card game: — Card
— Set up a deck as an array * Properties: suit, rank
of cards. (First, choose * Actions: compare, show
representation of cards.) — Deck
— Shuffle the cards * Property: array of Cards
— Deal cards to players * Actions: shuffle, deal, get #cards left
— Evaluate each player’s — Hand ...
hand to determine — Player ..
winner °T Ob|ec‘r oriented
Procedural pr'qu'Gmmlnq al ppoqramm|nq fOCUS onh the
focus on the algorithm, ie., tt designh of the objects (data
the pr'ocedur'es, necessary = qchons) necessary for

for solving a problem solving a problem

Notice the two steps involved in OOP?

* Define the classes (of the objects)

— Identify the properties (data) and actions (methods, i.e., functions) of
each class

* Create the objects (from the classes) that are then used—that
interact with one another

Defining a class # creating an object

* A class is a specification/template -
— E.g.,a cookie cutter specifies the = B
shape of a cookie b <

* An object is a concrete instance of
the class

— Need to apply the cookie cutter to
get a cookie (an instance, the object)

— Many instances (cookies) can be made
using the class (cookie cutter) s

— Instances do not interfere with one '
another. E.g., biting the head off one
cookie doesn’t remove the heads of
the other cookies

Example class: Rectangle

* Properties:
— xLL, yLL, width, height
* Methods (actions):

(xLL, yLL)
— Calculate area

— Calculate perimeter

— Draw

— Intersect (the intersection between two rectangles is a rectangle!)

Poll: properties & methods

What if rectangles stored the following properties instead:
— xCenter, yCenter, halfWidth, halfHeight

Can they still provide these methods!?

— Calculate area

— Calculate perimeter
— Draw

— Intersect A: yes

d

B: no

Example class: TimeOfDay

* Properties:

— Hour, minute, second

* Methods (actions):
— Show (e.g., display in hh:mm:ss format)

— Advance (e.g., advance current time by some amount)

Matlab supports procedural and object-oriented programming

* We have been writing procedural programs—focusing on the
algorithm, implemented as a set of functions

* We have used objects in Matlab as well, e.g., graphics
* A plot is a “handle graphics” object
— Can produce plots without knowing about objects

— Knowing about objects gives more possibilities

Objects of the same class have the same properties

x= 1:10;

% Two separate graphics objects:
plot(x, sin(x), 'k-’)
plot(x(1:5), 2.2%x(1:5), 'm-*’")

* Both objects have some x-data, some y-data, some
line style,and some marker style. These are the
properties of one kind, or class, of the objects (plots)

* The values of the properties are different for the
individual objects

Optional reading: Script demoPlotObj.m shows
some properties of graphics objects. Can also see
MATLAB documentation for further detail.

Object-Oriented Programming

* First design and define the classes (of the
objects)

— ldentify the properties (data) and actions
(methods, i.e., functions) of each class

* Then create the objects (from the classes)
that are then used, that interact with one

another

Class Interval

* An interval has two properties:
— left, right
* Actions—methods—of an interval include
— Scale, i.e., expand
— Shift
— Check if one interval is in another

— Check if one interval overlaps with another

See demoIntervalO.m

Class Interval

* An interval has two properties:
— left, right
* Actions—methods—of an interval include
— Scale, i.e., expand
— Shift
— Check if one interval is in another

— Check if one interval overlaps with another

To specify the properties and actions of an
object is to define its class. This files is Interval.m

classdef Interval < handle
properties
left
right

end

methods
function scaleRight(self, f)

end

function shift(self, s)

end

function Inter = overlap(self, o

end \

These methods
end (functions) are
inside the classdef

end

Given class Interval (file Interval.m) ...

% Create 2 Intervals, call them A, B
A= Interval(2,4.5)
B= Interval(-3,1)

% Assignment another right end point
A.right= 14

% Half the width of A (scale by 0.5)
A.scaleRight(.5)

% See the result

disp(A.right) % show value in right property in A
disp (A) % show all property values in A
disp (B)

Observations:

*Each object is
referenced by a name.

« Two objects of same
class has the same
properties (and
methods).

* To access a property
value, you have to
specify whose property
(which object's
property) using the dot
notation.

*Changing the property
values of one object
doesn't affect the
property values of
another object.

See demoIntervalO.m

classdef Interval < handle

An Interval object

properties
The “handle” or “reference” _— left
(of the object right
167.32 //end
|eft 3 methods
| function scaleRiIght(self, f)
right | 7 "
-1 Inte rval() | function shift(self, s)
V 4
scaleRight() |
shift()
function Inter = overlap(self, other)
overlap() -
end
The “constructor” method
An object is also called an “instance” of a class. It end

contains every property, “instance variable,” and
every “instance method” defined in the class. end

classdef Interval < handle

Multiple Interval objects

properties
left
/ \ / \ right
167.32 177.54 .
I eft 3 I eft 4 methods
function scaleRight f)
right | 7 right | 6 —

Interval() Interval() function shift 5)
scaleRight() scaleRight() "

S h ift() S h ift() function Inter = overlap other)

overlap() overlap()

end

Every object (instance) contains every “instance end
variable” and every “instance method” defined in
the class. Every object has a unique handle. end

classdef Interval < handle

Slmpllfled Interval class % An Interval has a left end and a right end
properties
To create an Interval left
. . ight
object, use its class I
name as a function
methods
Ca”: — Interval 3 7 functionlnter = Interval(lt, rt)
P V onstruct an Interval obj
) . Inter.left= It;
167.32 Inter.right=rt;
end

left | 3
function scaleRight(self, f)
. % Scale the interval by a factor f
rg ht | 7 w= self.right - self.left;
self.right= self.left + w*f;

Interval() Z"d
en

scaleRight() end

classdef Interval < handle

e constructor metno % An Interval has a left end and a right end
Th truct thod
properties
To create an Interval left
. . right stores the handle of the
object, use its class s C ot being created

name as a function

methods

Ca”: P — |nterva|(3’7) function Inter = Interval(lt, rt)
% Constructor: construct an Interval obj
) Inter.left= It;

16732 | Inter.right=rt;
end
left | 3 Constructor, a special method with these jobs:
right | 7 * Automatically compute the handle of the new
object; the handle must be returned.

e Execute the function code (to assign values to
Interval() properties)
scaleRight() Constructor is the only method that has the

name of the class.

A handle object is
referenced by its handle

p = Interval(3,7);
r = Interval(4,6);

P |167.32 I |1 177.54
167.32 177.54

left | 3 left | 4
right | 7 right | 6
Interval() Interval()
scaleRight() || scaleRight()

A handle, also
called a reference,
is like an address;
it indicates the
memory location
where the object
is stored.

S'\O(‘.\“g
e e ?ﬁad ?f)
W“‘ﬁ\\sb coference

dato

What is the effect of referencing?

p = Interval(3,7); % p references an Interval object

s = p; 7% s stores the same reference as p
s.left = 2; % change value inside object
disp(p.left) 70 2 is displayed . ot
biect '° ==
[167.32 | TY\ZOOd‘\/Y\O new N
P |167.32 | cop\e® . Creﬁ"e’ '
eft XZ Obsec“\ Y\
oY
right | 7 s and P ce e
S |167.32 fereft™ . gis
Interval() me 003
ST S Of
scaleRight() an QW8

What is the effect of referencing?

p = Interval(3,7); % p references an Interval object

s.left = 2;
disp(p.left)

clear p

Phse]

S

7% s stores the same reference as p
% change value inside object

% 2 is displayed

% get rid of p from memory

167.32

' 167.32
left |.3" 2 The Ob.‘)ed
right | 7 gxill can ‘ge
access®
Interval() ,mrough 5.
scaleRight()

In contrast, arrays are stored by value ...

p= [3, 7]; % A vector with two elements

s= p; % s gets a copy of p--s is ANOTHER
% vector with same element wvalues

s(l)= 2; % Changes s’s copy only, not p’s

o®

disp(p (1)) What is displayed?

p: [3 7]

Draw the memory!

