
• Previous lecture:

– File I/O, sort

• Today’s lecture:

– Introduction to objects and classes

• Announcements:

– Try to finish Exercise 11 during DIS section ahead of

Thursday’s lecture.

– Test 2A will be released on Canvas at 4:30pm EDT

• No Piazza, Consulting Tue/Wed. OH available for projects

– Project 5 will be released tonight, due next Thurs

– Reminder: academic integrity

Different kinds of abstraction

• Packaging procedures (program instructions) into a function

– A program is a set of functions executed in the specified order

– Data is passed to (and from) each function

• Packaging data into an array or structure

– Elevates thinking

– Reduces the number of variables being passed to and from functions

• Packaging data, and the instructions that work on those data, into
an object

– A program is the interaction among objects

– Object-oriented programming (OOP) focuses on the design of data-
instructions groupings

A card game, developed in two ways

•Develop the
algorithm—the logic—
of the card game:

– Set up a deck as an array
of cards. (First, choose
representation of cards.)

– Shuffle the cards

– Deal cards to players

– Evaluate each player’s
hand to determine
winner

• Identify “objects” in the game
and define each:

– Card

• Properties: suit, rank

• Actions: compare, show

– Deck

• Property: array of Cards

• Actions: shuffle, deal, get #cards left

– Hand …

– Player …

•Then write the game—the
algorithm—using objects of
the above “classes”

Procedural programming:
focus on the algorithm, i.e.,
the procedures, necessary
for solving a problem

A card game, developed in two ways

•Develop the
algorithm—the logic—
of the card game:

– Set up a deck as an array
of cards. (First, choose
representation of cards.)

– Shuffle the cards

– Deal cards to players

– Evaluate each player’s
hand to determine
winner

• Identify “objects” in the game
and define each:

– Card

• Properties: suit, rank

• Actions: compare, show

– Deck

• Property: array of Cards

• Actions: shuffle, deal, get #cards left

– Hand …

– Player …

•Then write the game—the
algorithm—using objects of
the above “classes”

Procedural programming:
focus on the algorithm, i.e.,
the procedures, necessary
for solving a problem

Object-oriented
programming: focus on the
design of the objects (data
+ actions) necessary for
solving a problem

Notice the two steps involved in OOP?

• Define the classes (of the objects)

– Identify the properties (data) and actions (methods, i.e., functions) of

each class

• Create the objects (from the classes) that are then used—that

interact with one another

Defining a class ≠ creating an object

• A class is a specification/template

– E.g., a cookie cutter specifies the
shape of a cookie

• An object is a concrete instance of
the class

– Need to apply the cookie cutter to
get a cookie (an instance, the object)

– Many instances (cookies) can be made
using the class (cookie cutter)

– Instances do not interfere with one
another. E.g., biting the head off one
cookie doesn’t remove the heads of
the other cookies

Example class: Rectangle

• Properties:

– xLL, yLL, width, height

• Methods (actions):

– Calculate area

– Calculate perimeter

– Draw

– Intersect (the intersection between two rectangles is a rectangle!)

(xLL, yLL)

Poll: properties & methods

What if rectangles stored the following properties instead:

– xCenter, yCenter, halfWidth, halfHeight

Can they still provide these methods?

– Calculate area

– Calculate perimeter

– Draw

– Intersect A: yes

B: no

Example class: TimeOfDay

• Properties:

– Hour, minute, second

• Methods (actions):

– Show (e.g., display in hh:mm:ss format)

– Advance (e.g., advance current time by some amount)

Matlab supports procedural and object-oriented programming

• We have been writing procedural programs—focusing on the

algorithm, implemented as a set of functions

• We have used objects in Matlab as well, e.g., graphics

• A plot is a “handle graphics” object

– Can produce plots without knowing about objects

– Knowing about objects gives more possibilities

Objects of the same class have the same properties

• Both objects have some x-data, some y-data, some

line style, and some marker style. These are the

properties of one kind, or class, of the objects (plots)

• The values of the properties are different for the

individual objects

x= 1:10;

% Two separate graphics objects:

plot(x, sin(x), ’k-’)

plot(x(1:5), 2.^x(1:5), ’m-*’)

Optional reading: Script demoPlotObj.m shows
some properties of graphics objects. Can also see
MATLAB documentation for further detail.

Object-Oriented Programming

• First design and define the classes (of the

objects)

– Identify the properties (data) and actions

(methods, i.e., functions) of each class

• Then create the objects (from the classes)

that are then used, that interact with one

another

Class Interval

• An interval has two properties:

– left, right

• Actions—methods—of an interval include

– Scale, i.e., expand

– Shift

– Check if one interval is in another

– Check if one interval overlaps with another

See demoInterval0.m

Class Interval

• An interval has two properties:

– left, right

• Actions—methods—of an interval include

– Scale, i.e., expand

– Shift

– Check if one interval is in another

– Check if one interval overlaps with another

classdef Interval < handle

properties

left

right

end

methods

function scaleRIght(self, f)

. . .

end

function shift(self, s)

. . .

end

function Inter = overlap(self, other)

. . .

end

. . .

end

end

To specify the properties and actions of an
object is to define its class. This files is Interval.m

These methods
(functions) are
inside the classdef

Given class Interval (file Interval.m) …

% Create 2 Intervals, call them A, B

A= Interval(2,4.5)

B= Interval(-3,1)

% Assignment another right end point

A.right= 14

% Half the width of A (scale by 0.5)

A.scaleRight(.5)

% See the result

disp(A.right) % show value in right property in A

disp(A) % show all property values in A

disp(B)

Observations:
•Each object is
referenced by a name.
•Two objects of same
class has the same
properties (and
methods).
•To access a property
value, you have to
specify whose property
(which object’s
property) using the dot
notation.
•Changing the property
values of one object
doesn’t affect the
property values of
another object.

See demoInterval0.m

An Interval object
classdef Interval < handle

properties

left

right

end

methods

function scaleRIght(self, f)

. . .

end

function shift(self, s)

. . .

end

function Inter = overlap(self, other)

. . .

end

. . .

end

end

167.32

3

7

left

right

Interval()
scaleRIght()
shift()
overlap()

The “handle” or “reference”
of the object

The “constructor” method

An object is also called an “instance” of a class. It
contains every property, “instance variable,” and

every “instance method” defined in the class.

Multiple Interval objects
classdef Interval < handle

properties

left

right

end

methods

function scaleRight(self, f)

. . .

end

function shift(self, s)

. . .

end

function Inter = overlap(self, other)

. . .

end

. . .

end

end

167.32

3

7

left

right

Interval()
scaleRight()
shift()
overlap()

177.54

4

6

left

right

Interval()
scaleRight()
shift()
overlap()

Every object (instance) contains every “instance
variable” and every “instance method” defined in

the class. Every object has a unique handle.

Simplified Interval class

To create an Interval

object, use its class

name as a function

call: p = Interval(3,7)

classdef Interval < handle
% An Interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% Constructor: construct an Interval obj

Inter.left= lt;
Inter.right= rt;

end

function scaleRight(self, f)
% Scale the interval by a factor f

w= self.right - self.left;
self.right= self.left + w*f;

end
end

end

3

7

left

right

Interval()

scaleRight()

167.32

The constructor method

To create an Interval

object, use its class

name as a function

call: p = Interval(3,7)

classdef Interval < handle
% An Interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% Constructor: construct an Interval obj

Inter.left= lt;
Inter.right= rt;

end

function scale(self, f)
% Scale the interval by a factor f

w= self.right - self.left;
self.right= self.left + w*f;

end
end

end

3

7

left

right

Interval()

scaleRight()

167.32

Constructor, a special method with these jobs:
• Automatically compute the handle of the new

object; the handle must be returned.
• Execute the function code (to assign values to

properties)
Constructor is the only method that has the
name of the class.

A handle object is

referenced by its handle

p = Interval(3,7);

r = Interval(4,6);

3

7

left

right

Interval()

scaleRight()

167.32

4

6

left

right

Interval()

scaleRight()

177.54

p 167.32 r 177.54

A handle, also
called a reference,
is like an address;
it indicates the
memory location
where the object
is stored.

What is the effect of referencing?

p = Interval(3,7); % p references an Interval object

s = p; % s stores the same reference as p

s.left = 2; % change value inside object

disp(p.left) % 2 is displayed

3

7

left

right

Interval()

scaleRight()

167.32

p 167.32

s 167.32

2

What is the effect of referencing?

p = Interval(3,7); % p references an Interval object

s = p; % s stores the same reference as p

s.left = 2; % change value inside object

disp(p.left) % 2 is displayed

clear p % get rid of p from memory

3

7

left

right

Interval()

scaleRight()

167.32

p 167.32

s 167.32

2

In contrast, arrays are stored by value …

p= [3, 7]; % A vector with two elements

s= p; % s gets a copy of p--s is ANOTHER

% vector with same element values

s(1)= 2; % Changes s’s copy only, not p’s

disp(p(1)) % What is displayed?

In fact, storing-by-value is true of all non-handle-object
variables. You already know this from before …

a=5;

b=a+1; % b stores the value 6, not

% the “definition” a+1

a=8; % Changing a does not change b

disp(b) % 6 is displayed

A: 2 B: 3 B: Something else

Draw the memory!
p:

s:

[3 7]

