
◼ Previous Lecture:

◼ Review Linear Search

◼ Cell arrays

◼ Today’s Lecture:

◼ File input/output

◼ Using built-in function sort

◼ Motivating packaging

◼ Announcements:
◼ Answer today’s in-lecture quiz via Gradescope (due Sat, 11:15am)

◼ See Canvas for submission instructions

◼ Test 2A will be released Tue
◼ 50 minutes in 48 hr window

◼ Matrices, images, char arrays, vectorized code

◼ Review Sun

◼ Tutoring available during consulting hours (sign up on Canvas)
◼ Next week: no consulting, Piazza during test window (Tue/Wed)

Review: cell arrays

x=

◼ x{3,1} → 'M'

◼ x{1,1} → [-4 -1]

◼ x{1,1}(2) → -1

◼ x{3,2} →

◼ X{3,2}{1} → 'CS'

◼ X{3,2}{1}(2) → 'S''M'

.91

5

-4 -1

7

' ''.' ' '

'm''c' 'o'

'C''S' -11.1 12
-71.1

812

'C''S' -11.1 12
-71.1

812

Review question

Given the cell array:

x= { 'A', [3, 1, 4], uint8(zeros(6,4)) }

Which expression changes the 1 in x to a 5?

x(2,2)= 5

y= x{2};
y(2)= 5

x{2}(2)= 5

x(2)= [3, 5, 4]

A

B

C

D

A detailed sort-a-file example

File statePop.txt contains state population data

sorted alphabetically by state. Create a new file

statePopSm2Lg.txt

that is structured the same as statePop.txt

except that the states are ordered from smallest to

largest according to population.

• Need the pop as numbers
for sorting.

• Can’t just sort the pop—
have to maintain association
with the state names.

Alabama 4557808

Alaska 663661

Arizona 5939292

Arkansas 2779154

California 36132147

Colorado 4665177

: :

: :

statePop.txt

First, read the file and store each line in a cell of a

cell array

C = file2cellArray('StatePop.txt');

Alabama 4557808

Alaska 663661

Arizona 5939292

Arkansas 2779154

California 36132147

Colorado 4665177

: :

: :

statePop.txt

C= { 'Alabama 4557808';
'Alaska 663661';
…}

End-of-line and end-of-file

Line feed character ('\n')

marks the end of a line

Computer knows how many

characters are in file, and

therefore where it ends.

eof stands for end of file

Alabama 4557808

Alaska 663661

Arizona 5939292

stateData.txt

Read data from a file

1. Open a file

2. Read it line-by-line until end-of-file

3. Close the file

function fopen()

functions fgetl(), feof()

function fclose()

Closing a file is like the end keyword – need to tell MATLAB when you’re done

1 & 3: Open (and close) file
fid = fopen('statePop.txt', 'r');

fclose(fid);

An opened file
has a file ID, here
stored in variable
fid

Built-in function
to open a file

Name of the file
opened. txt and
dat are common file
name extensions for
plain text files

‘r’ indicates
that the file
has been
opened for
reading

; because file
commands return
status codes

fid = fopen('statePop.txt', 'r');

k= 0;

while ~feof(fid)

k= k+1;

Z{k}= fgetl(fid);

end

fclose(fid);

2: Read each line and store it in cell array

False until end-of-file

is reached

Get the next line.

(Each call gets one line; you cannot

go to a specific line.)

Doesn’t work for
empty files

function CA = file2cellArray(fname)

% fname is a string that names a non-empty

% file in the current directory.

% CA is a cell array with CA{k} being the

% k-th line in the file.

fid= fopen(fname, 'r');

k= 0;

while ~feof(fid)

k= k+1;

CA{k}= fgetl(fid);

end

fclose(fid);

Extracting population

◼ Two steps:

1. Extract substring containing pop (and not name)

2. Convert string (char vector) into number (scalar)

New York 19254630
North Carolina 8683242

123456789012345678901234
1 2

Slicing question

Assume ‘statePop.txt’ is read into C using file2CellArray().

Which of these expressions evaluates to ‘zona’?

C{3,4:7}

C(3,4:7)

C{3}(4:7)

C(4:7,3)

A

B

C

D

Alabama 4557808

Alaska 663661

Arizona 5939292

Arkansas 2779154

California 36132147

Colorado 4665177

: :

: :

statePop.txt

Next, get the populations into a numeric vector

C = file2cellArray('StatePop.txt');

n = length(C);

pop = zeros(n,1);

for i=1:n

S = C{i};

pop(i) = str2double(S(16:24));

end Converts a string representing a numeric value (digits,
decimal point, spaces) to the numeric value → scalar of type
double. E.g., x=str2double(’ -3.24 ’) assigns to
variable x the numeric value -3.2400…

Built-In function sort

Syntax: [y,idx] = sort(x)

10 20 5 90 15

5 10 15 20 90

3 1 5 2 4

X:

y:

idx:

y(1) = x(3) = x(idx(1))

Built-In function sort

Syntax: [y,idx] = sort(x)

10 20 5 90 15

5 10 15 20 90

3 1 5 2 4

X:

y:

idx:

y(2) = x(1) = x(idx(2))

Built-In function sort

Syntax: [y,idx] = sort(x)

10 20 5 90 15

5 10 15 20 90

3 1 5 2 4

X:

y:

idx:

y(3) = x(5) = x(idx(3))

Built-In function sort

Syntax: [y,idx] = sort(x)

10 20 5 90 15

5 10 15 20 90

3 1 5 2 4

X:

y:

idx:

y(k) = x(idx(k))

Sort from little to big

% C is cell array read from statePop.txt

% pop is vector of state pop (numbers)

[s,idx] = sort(pop);

Cnew = cell(n,1);

for i=1:length(Cnew)

ithSmallest = idx(i);

Cnew{i} = C{ithSmallest};

end

Cnew{i} = C{idx(i)};

Wyoming 509294

Vermont 623050

North Dakota 636677

Alaska 663661

South Dakota 775933

Delaware 843524

Montana 935670

: :

: :

Illinois 12763371

Florida 17789864

New York 19254630

Texas 22859968

California 36132147

Cnew

Sorting question

Assume you have C, pop, s, and idx as defined previously in this

lecture. Write a code snippet that prints the names of the states

whose populations are between the 20th and 40th percentile.

Statistics review: 1/5 of states will have smaller populations than the ones you

print, and 3/5 of states will have larger populations.

Save results

% C is cell array read from statePop.txt

% pop is vector of state pop (numbers)

[s,idx] = sort(pop);

Cnew = cell(n,1);

for i=1:length(Cnew)

ithSmallest = idx(i);

Cnew{i} = C{ithSmallest};

end

cellArray2file(Cnew,'statePopSm2Lg.txt')

A 3-step process to

read data from a file or

write data to a file

1. (Create and) open a file

2. Read data from or write data to the file

3. Close the file

1. Open a file

fid = fopen('popSm2Lg.txt', 'w');

fclose(fid);

An opened file has

a file ID, here

stored in variable
fid

Built-in function

to open a file

Name of the file

(created and) opened.

txt and dat are

common file name

extensions for plain

text files

‘w’ indicates

that the file

is to be

opened for

writing

Use ‘a’ for

appending

(don’t forget to later close the file)

2. Write (print) to the file

fid = fopen(‘popSm2Lg.txt’, 'w');

for i=1:length(Cnew)

fprintf(fid, '%s\n', Cnew{i});

end

fclose(fid);

Substitution sequence

specifies the string

format (followed by a

new-line character)

The ith item

in cell array
Cnew

function cellArray2file(CA, fname)

% CA is a cell array of strings.

% Create a file with the name

% specified by the string fname.

% The i-th line in the file is CA{i}

fid= fopen(fname, 'w');

for i= 1:length(CA)

fprintf(fid, '%s\n', CA{i});

end

fclose(fid);

Storing only a selected (small) section of data from

a big file

◼ The previous example reads the whole file and

stores all the text

◼ If you’re interested in only a small part of the

data, storing everything is an overkill

◼ Read “issYear.m” posted on the website to learn

how to store only the data that meet certain

criteria

Example: NORAD two-line elements

ISS (ZARYA)

1 25544U 98067A 19280.43177083 .00000288 00000-0 13040-4 0 9993

2 25544 51.6437 164.6585 0007556 123.5429 237.5675 15.50172544192676

⋮

STARLINK-74

1 44293U 19029BL 19280.46307273 .00000774 00000-0 72445-4 0 9999

2 44293 53.0058 280.3384 0001435 93.2755 266.8397 15.05496611 21751

STARLINK-53

1 44294U 19029BM 19279.64653505 .00000628 00000-0 62400-4 0 9998

2 44294 52.9988 283.1290 0000873 99.6752 260.4335 15.05478127 19808

COSMOS 2534 [GLONASS-M]

1 44299U 19030A 19279.63973935 .00000042 00000-0 00000+0 0 9999

2 44299 64.7328 275.7191 0015277 282.8642 34.0841 2.13101948 2816

Website example: satellite launch year

1. Read line (satellite name)

2. While name is not ISS
1. Read 2 lines (skip)

2. Read line (satellite name)

3. Read line (record 1)

4. Extract characters 10 & 11

5. Convert to number, interpret
as year

SCD 2

1 25504U 98060A 19288.18395014 .00000230 00000-0 13957-4 0 9992

2 25504 24.9967 317.5526 0017113 331.0386 103.7958 14.44077629107938

ISS (ZARYA)

1 25544U 98067A 19280.43177083 .00000288 00000-0 13040-4 0 9993

2 25544 51.6437 164.6585 0007556 123.5429 237.5675 15.50172544192676

⋮

STARLINK-53

1 44294U 19029BM 19279.64653505 .00000628 00000-0 62400-4 0 9998

2 44294 52.9988 283.1290 0000873 99.6752 260.4335 15.05478127 19808

COSMOS 2534 [GLONASS-M]

1 44299U 19030A 19279.63973935 .00000042 00000-0 00000+0 0 9999

2 44299 64.7328 275.7191 0015277 282.8642 34.0841 2.13101948 2816

◼ A point in the plane has an x coordinate and a y coordinate.

◼ If a program manipulates lots of points, there will be lots of

x’s and y’s.

◼ Anticipate clutter. Is there a way to “package” the two

coordinate values?

Data are often related

Our Reasoning Level:

P and Q are points.
Compute the midpoint M
of the connecting line
segment.

Behind the scenes we do
this:

Mx = (Px + Qx)/2

My = (Py + Qy)/2

Packaging affects thinking

We’ve seen this before:
functions are used to
“package’’ calculations.

This packaging (a type of
abstraction) elevates the
level of our reasoning
and is critical for
problem solving.

-4 3.1ptdat

1 2

1 2

Related data
grouped into an
array. X-coord
implicitly labelled 1;
y-coord implicitly
labelled 2

Options for storing a point (-4, 3.1)

◼ Simple scalars

◼ Simple vector

◼ Cell array ptdatc { -4 3.1 }

◼ Object

-4 3.1xdat ydat Ungrouped data

-4 3.1

x y
pt

Related data grouped
according to a class definition.
Explicit, clear labelling is
possible via property names

