
Warmup

Assume vectors x, y contain the

coordinates of the vertices of a

rectangle:

x= [3 3 7 7];

y= [1 4 4 1];

Will the following code draw the four

sides of the rectangle?

plot(x, y, 'k-')

(3,4) (7,4)

(3,1) (7,1)

A: Yes

B: No

Concatenation

◼ Concatenate two scalars into a

(row-)vector:

u= [3 1]

◼ Concatenate a scalar onto a

(row-)vector:

v= [u 4] % v = [3 1 4]

◼ Application: repeat the first element

of a vector at its end:

w= [v v(1)] % w = [3 1 4 3]

◼ Application: append to a vector:

w= [w 5] % w = [3 1 4 3 5]

◼ Previous Lecture:
◼ Discrete vs. continuous; finite vs. infinite

◼ Linear interpolation

◼ RGB color

◼ Floating-point arithmetic

◼ Introduction to vectorized computation

◼ Today’s Lecture:

◼ Vectorized operations

◼ Introduction to 2-d array—matrix

◼ Announcements:

◼ Survey season!
◼ Please fill out “Mid-Semester Survey” on CMS

◼ Please respond to ENG eval requests (course, TAs, etc.)

◼ See website for review materials. Optional review session on Sunday, 1:00-
2:30pm in Phillips 203.

◼ Prelim 1 Tuesday 3/10 at 7:30pm, Olin Hall
◼ Alt exam: 5:45pm; check e-mail

Studying for exams

1. Write your own solutions to examples from lecture

2. Re-do discussion problems un-aided

3. Answer review questions, using notes as needed

4. Do one old exam, using notes as needed

5. Do a second old exam un-aided – this is your best diagnostic

6. Review specific topics as necessary

Just reading code, solutions will not help!

Initialize arrays if dimensions are known (“pre-allocation”)

… instead of “building” the array one component

at a time

% Build y on the fly

x=linspace(a,b,n);

for k = 1:n

y(k)= myF(x(k));

% OR

%y= [y myF(x(k));

end

% Initialize y

x= linspace(a,b,n);

y= zeros(1,n);

for k = 1:n

y(k)= myF(x(k));

end

Faster for large n!
BUT you need to know n

Initialize arrays if dimensions are known (“pre-allocation”)

… instead of “building” the array one component

at a time

% Build y on the fly

x=linspace(a,b,n);

for k = 1:n

y(k)= myF(x(k));

% OR

%y= [y myF(x(k));

end

% Initialize y

x= linspace(a,b,n);

y= zeros(1,n);

for k = 1:n

y(k)= myF(x(k));

end

Vectorized code
—a Matlab-specific feature

◼ Code that performs element-by-element arithmetic/relational/logical
operations on array operands in one step

◼ Scalar operation: x + y

where x, y are scalar variables

◼ Vectorized code: x + y

where x and/or y are vectors. Generally, vectors x and y should have the
same length and shape

See Sec 4.1 for list of vectorized
arithmetic operations

Vectorized addition

2 9.51x

1 202y+

3 11.53z=

Matlab code: z= x + y

Vectorized multiplication (vector-vector)

2 9.51a

1 202b×

2 1802c=

Matlab code: c= a .* b

Vectorized

element-by-element arithmetic operations

on arrays

+

-

.*

./

A dot (.) is necessary in front of these math operators

.^

See full list of ops in §4.1

Shift (scalar-vector addition)

2 9.51

x

y+

5 123.54z=

Matlab code: z= x + y

3

Reciprocate (scalar-vector division)

2 8.51

x

y/

.5 .12521z=

Matlab code: z= x ./ y

1

./

A dot (.) is necessary in front of these math operators

Vectorized

element-by-element arithmetic operations between an

array and a scalar

+

-

*

/

+

-

*

.^ .^

Simplified rule: Use dot for these element-by-element ops: * / ^

See full list of ops in §4.1

When are functions vectorized?

◼ Many built-in functions (sin(), abs(), …)

◼ When you only use vectorized operations to implement it

◼ When you loop over the length of the input

◼ Note: Matlab treats scalars like length-1 vectors

Not all functions make sense to vectorize (users can always write

their own loops, after all)

Can we plot this?

21

)2/exp()5sin(
)(

x

xx
xf

+

−
=

for
-2 <= x <= 3

x = linspace(-2,3,200);

y = sin(5*x).*exp(-x/2)./(1 + x.^2);

plot(x,y)

Element-by-element arithmetic

operations on arrays

Yes!

See plotComparison.m

Element-by-element arithmetic operations on arrays…

Also called “vectorized code”

x = linspace(-2,3,200);

y = sin(5*x).*exp(-x/2)./(1 + x.^2);

Contrast with scalar operations that we’ve used

previously…

a = 2.1;

b = sin(5*a);

End of

Prelim 1 material

Storing and using data in tables

A company has 3 factories that make 5

products with these costs:

Connections

between webpages

0 0 1 0 1 0 0

1 0 0 1 1 1 0

0 1 0 1 1 1 1

1 0 1 1 0 1 0

0 0 1 1 0 1 1

0 0 1 0 1 0 1

0 1 1 0 1 1 0

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

What is the best way to fill a given

purchase order?

2-d array: matrix

◼ An array is a named collection of like data organized into

rows and columns

◼ A 2-d array is a table, called a matrix

◼ Two indices identify the position of a value in a matrix,

e.g.,

mat(r,c)

refers to component in row r, column c of matrix mat

◼ Array indices still start at 1

◼ Rectangular: all rows have the same #of columns

c

r

mat

Indexing example

M(1,1) M(1,2) M(1,3) M(1,4)

M(2,1) M(2,2) M(2,3) M(2,4)

M(3,1) M(3,2) M(3,3) M(3,4)

M

Creating a matrix

◼ Built-in functions: ones(), zeros(), rand()
◼ E.g., zeros(2,3) gives a 2-by-3 matrix of 0s

◼ E.g., zeros(2) gives a 2-by-2 matrix of 0s

◼ “Build” a matrix using square brackets, [], but the dimension
must match up:

◼ [x y] puts y to the right of x

◼ [x; y] puts y below x

◼ [4 0 3; 5 1 9] creates the matrix

◼ [4 0 3; ones(1,3)] gives

◼ [4 0 3; ones(3,1)] doesn’t work

4 0 3

5 1 9

4 0 3

1 1 1

Working with a matrix:
size() and individual components

[nr, nc]= size(M) % nr is #of rows

% nc is #of columns

nr= size(M, 1) % #of rows

nc= size(M, 2) % #of columns

n= size(M)

% n is length 2 vector since M is 2-d:

% n(1) is #of rows, n(2) is #of cols

M(2,4)= 1;

disp(M(3,1))

2 0.5-1 -3

52 7.581 2

5 98.5-3 10

3 768 7

Given a matrix M

Working with a matrix:
size() and individual components

Given a matrix M and the script below

Which statement(s) could make the update shown in
purple on the diagram?

[nr, nc]= size(M);

n= size(M);

M(1,nc)= 4;

M(1,n(2))= 4;

M(0,4)= 4;

2 0.5-1 7

52 1.581 -8

5 98.5-3 10

3 .768 -2

 A

 B

 C

D: None of A, B, C

E: More than one of A, B, C

M
4

Example: minimum value in a matrix

function val = minInMatrix(M)

% val is the smallest value in matrix M

1

2

c…

⁞
r

1 2 …

⁞

M

Pattern for traversing a matrix M

[nr, nc] = size(M)

for r= 1:nr

% At row r

for c= 1:nc

% At column c (in row r)

%

% Do something with M(r,c) …

end

end

