Warmup

Assume vectors x, y contain the coordinates of the vertices of a rectangle：

$$
\left.\begin{array}{l}
x=\left[\begin{array}{llll}
3 & 3 & 7 & 7
\end{array}\right] ; \\
y=\left[\begin{array}{llll}
1 & 4 & 4
\end{array}\right]
\end{array}\right]
$$

Will the following code draw the four sides of the rectangle？
plot(x, y, 'k-')

A：Yes

B：No

Concatenation

- Concatenate two scalars into a (row-)vector:
$\mathbf{u}=\left[\begin{array}{ll}3 & 1\end{array}\right]$
- Concatenate a scalar onto a (row-)vector:

$$
\mathbf{v}=\left[\begin{array}{ll}
\mathbf{u} & 4
\end{array}\right] \quad \% \quad \mathbf{v}=\left[\begin{array}{lll}
3 & 1 & 4
\end{array}\right]
$$

- Application: repeat the first element of a vector at its end:

$$
\mathbf{w}=[\mathbf{v} \quad v(1)] \quad \% \quad w=\left[\begin{array}{llll}
3 & 1 & 4 & 3
\end{array}\right]
$$

- Application: append to a vector:

$$
\mathbf{w}=\left[\begin{array}{ll}
\mathbf{w} & 5
\end{array}\right] \quad \% \mathbf{w}=\left[\begin{array}{lllll}
3 & 1 & 4 & 3 & 5
\end{array}\right]
$$

- Previous Lecture:
- Discrete vs. continuous; finite vs. infinite
- Linear interpolation
- RGB color
- Floating-point arithmetic
- Introduction to vectorized computation
- Today's Lecture:
- Vectorized operations
- Introduction to 2-d array-matrix
- Announcements:
lots of
new topics!
- Survey season!
- Please fill out "Mid-Semester Survey" on CMS
- Please respond to ENG eval requests (course, IAs, etc.)
- See website for review materials. Optional review session on Sunday, I:002:30pm in Phillips 203.
- Prelim I Tuesday $3 / 10$ at $7: 30$ pm, Olin Hall
- Alt exam: 5:45pm; check e-mail

Studying for exams

1. Write your own solutions to examples from lecture
2. Re-do discussion problems un-aided
3. Answer review questions, using notes as needed
4. Do one old exam, using notes as needed
5. Do a second old exam un-aided - this is your best diagnostic
6. Review specific topics as necessary

Just reading code, solutions will not help!

Initialize arrays if dimensions are known ("pre-allocation") ... instead of "building" the array one component at a time

```
% Initialize y
x= linspace(a,b,n);
y= zeros(1,n);
for k = 1:n
    Y(k)= myF (x (k));
end
        T
    Faster for large n!
BUT you need to know n
```

```
% Build y on the fly
x=linspace(a,b,n);
for k = 1:n
    y(k)= myF(x(k));
    % OR
    %y= [y myF(x(k));
end
```

$$
\begin{array}{r}
\text { Totally fine if you } \\
\text { don't know 'n' (ignore Matlab's } \\
\text { warning) }
\end{array}
$$

Initialize arrays if dimensions are known ("pre-allocation") ... instead of "building" the array one component at a time

```
% Initialize y
x= linspace(a,b,n);
y= zeros(1,n);
for k = 1:n
    y(k)= myF(x(k));
end
```

y :


```
% Build y on the fly
x=linspace(a,b,n);
for k = 1:n
    y(k)= myF(x(k));
    % OR
    %y= [y myF(x(k));
end
```


Vectorized code

—a Matlab-specificfeature

- Code that performs element-by-element arithmetic/relational/logical operations on array operands in one step
- Scalar operation: $x+y$
where x, y are scalar variables
Single value (not Containury multiode elements)
- Vectorized code: $\mathbf{x + y}$
where \mathbf{x} and/or \mathbf{y} are vectors. Generally, vectors \mathbf{x} and \mathbf{y} should have the same length and shape
rows/columns

Vectorized addition

$$
\begin{aligned}
& \mathbf{x} \begin{array}{|l|l|l|l|}
\hline 2 & 1 & .5 & 9 \\
\hline
\end{array} \\
& +\quad y \quad 1 \quad 2 \quad 0 \quad 2 \\
& =\quad \mathbf{z} \begin{array}{|l|l|l|l|}
\hline 3 & 3 & .5 & 11 \\
\hline
\end{array} \\
& \text { Observe: } \\
& z(1)=x(1)+y(1) \\
& z(2)=x(2)+y(2) \\
& z(k)=x(k)+y(k)
\end{aligned}
$$

Matlab code: $\mathbf{z =} \mathbf{x}+\mathbf{y}$

Vectorized multiplication (vector-vector)

$$
\begin{aligned}
& \text { a } \begin{array}{|l|l|l|l|}
\hline 2 & 1 & .5 & 9 \\
\hline & \text { b } \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 0 & 2 \\
\hline
\end{array} \\
\hline & \text { c } \begin{array}{|l|l|l|l|}
\hline 2 & 2 & 0 & 18 \\
\hline
\end{array}
\end{array} \begin{array}{l}
\\
\times
\end{array} \\
& \hline
\end{aligned}
$$

Matlab code: $\mathrm{c}=\mathrm{a} . * \mathrm{~b}$

Vectorized

element-by-element arithmetic operations on arrays

A dot (.) is necessary in front of these math operators

Shift (scalar-vector addition)

$$
\begin{array}{ll|l|l|l|l|}
+ & y & 2 & 1 & .5 & 9 \\
\hline
\end{array}
$$

Matlab code: $\mathbf{z =} \mathbf{x}+\mathbf{y}$

Reciprocate (scalar-vector division)

/	y	2	1	. 5	8
$=$	z	. 5	1	2	125

Vectorized

element-by-element arithmetic operations between an array and a scalar

A dot (.) is necessary in front of these math operators

Simplified rule: Use dot for these element-by-element ops: * / ^

When are functions vectorized?

- Many built-in functions (sin(), abs (), ...)
- When you only use vectorized operations to implement it
- When you loop over the length of the input
- Note: Matlab treats scalars like length-I vectors

$$
\begin{aligned}
& x=3.1 ; \\
& \text { length }(x)==1 \\
& x(1)==3.1
\end{aligned}
$$

Not all functions make sense to vectorize (users can always write their own loops, after all)

Can we plot this?

$$
f(x)=\frac{\sin (5 x) \exp (-x / 2)}{1+x^{2}} \quad-2<=x<=3
$$

$$
\begin{aligned}
& \text { Yes! } \\
& \mathbf{x}=\operatorname{linspace}(-2,3,200) ; \\
& y=\sin (5 \star x) \cdot \star \exp (-x / 2) \cdot /(1+x . \wedge 2) ; \\
& \operatorname{plot}(x, y)
\end{aligned}
$$

Element-by-element arithmetic operations on arrays... Also called "vectorized code"

```
x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);
```

Contrast with scalar operations that we've used previously...
a = 2.1;
b $=\sin (5 * a)$;
a and b are scalars

The operators are (mostly) the same; the operands may be scalars or vectors.

When an operand is a vector, you have "vectorized code."

End of
 Prelim 1 material

Storing and using data in tables

A company has 3 factories that make 5 products with these costs:

What is the best way to fill a given purchase order?

Connections between webpages

0	0	1	0	1	0	0
1	0	0	1	1	1	0
0	1	0	1	1	1	1
1	0	1	1	0	1	0
0	0	1	1	0	1	1
0	0	1	0	1	0	1
0	1	1	0	1	1	0

mat

- An array is a named collection of like data organized into rows and columns
- A 2-d array is a table, called a matrix
- Two indices identify the position of a value in a matrix, e.g.,

$$
\operatorname{mat}(r, c)
$$

refers to component in row r , column c of matrix mat

- Array indices still start at 1
- Rectangular: all rows have the same \#of columns

Indexing example

Creating a matrix

- Built-in functions: ones(), zeros(), rand()
- E.g., zeros $(2,3)$ gives a 2-by-3 matrix of $0 s$
- E.g., zeros(2) gives a 2-by-2 matrix of 0s
- "Build" a matrix using square brackets, [], but the dimension must match up:
- [$\left.\begin{array}{ll}x & y\end{array}\right]$ puts y to the right of x
- [x; y] puts y below x

- [4 0 3; ones $(1,3)$] gives
- [4 03 ; ones $(3,1)$] doesn't work

Working with a matrix:
size() and individual components

2	-1	.5	0	-3
3	8	6	7	7
5	-3	8.5	9	10
52	81	.5	7	2

$$
[\mathrm{nr}, \mathrm{nc}]=\operatorname{size}(\mathrm{M})
$$

$$
\text { \% } \mathrm{nr} \text { is \#of rows }
$$

\% nc is \#of columns
nr= size(M, 1) \% \#of rows
nc= size(M, 2) \% \#of columns
$\mathrm{n}=\operatorname{size}(\mathrm{M})$ 'size()' is weird like this \% n is length 2 vector since M is $2-d$: \% $n(1)$ is \#of rows, $n(2)$ is \#of cols $M(2,4)=1$; $\operatorname{disp}(M(3,1))$

Working with a matrix:
size() and individual components

Given a matrix M and the script below

M| 2 | -1 | .5 | 0 | $\not 44$ |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 8 | 6 | .7 | -2 |
| 5 | -3 | 8.5 | 9 | 10 |
| 52 | 81 | .5 | 1 | -8 |

Which statement(s) could make the update shown in purple on the diagram?

$$
\begin{aligned}
& {[\mathrm{nr}, \mathrm{nc}]=\operatorname{size}(\mathrm{M}) ;} \\
& \mathrm{n}=\operatorname{size}(\mathrm{M}) ; \\
& \mathrm{M}(1, \mathrm{nc})=4 ; \\
& \mathrm{M}(1, \mathrm{n}(2))=4 ; \boxed{\angle B} \\
& \mathrm{M}(0,4)=4 ;
\end{aligned}
$$

D: None of A, B, C
E : More than one of A, B, C

Example: minimum value in a matrix

function val $=$ minlnMatrix (M)

\% val is the smallest value in matrix M

Best-in-set pattern:

- Initialize best-so-far
- loop over set:
- If current value is better than best-su-far:
- Update best-so-far

Pattern for traversing a matrix M

$$
\begin{aligned}
& \text { [nr, } n c]=\text { size(M) } \\
& \text { for } r=1: n r \\
& \text { \% At row } r \\
& \text { for } c=I: n c \\
& \quad \% \text { At column } c \text { (in row } r \text {) } \\
& \quad \% \\
& \quad \text { \% Do something with } M(r, c) \ldots \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

