- Previous Lecture:
- Probabilities and vectors in simulation
- Today's Lecture (Ch. 4):
- Discrete vs. Continuous
- Vectorized calculations
- Colors and linear interpolation
- Floating-point arithmetic
- Announcements:
- Discussion this week in Hollister 40 I classroom
- Project 3 due at IIpm on Wednesday, 3/4
- No exercise check-off at this Wednesday's office/consulting hours due to project deadline
- Prelim I on Tues $3 / 10$ at $7: 30$ pm
- Review materials will be posted soon. An optional review session is scheduled for Sunday, 3/8 (time, location TBD)
- Alternate exam: look out for email, and be prepared to start early (5:45pm)

Discrete vs. continuous

$\sin (x)$

$\sin (x)$

A plot is made from discrete values, but it can look continuous if there are many points

Generating tables and plots

\mathbf{x}	$\sin (x)$
0.000	0.000
0.784	0.707
1.571	1.000
2.357	0.707
3.142	0.000
3.927	-0.707
4.712	-1.000
5.498	-0.707
6.283	0.000

\mathbf{x}, \mathbf{y} are vectors. A vector is a 1-dimensional list of values

$$
\begin{aligned}
& \mathbf{x}=\operatorname{linspace}(0,2 * \mathrm{pi}, 9)^{\prime} ; \\
& \mathbf{y}=\sin (\mathbf{x}) ; \\
& \mathrm{plot}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

How did we get all the sine values?

\mathbf{x}	$\sin (\mathbf{x})$
0.00	0.0
1.57	1.0
3.14	0.0
4.71	-1.0
6.28	0.0

and return vectors

0.00	1.00	0.00	-1.00	0.00

Connecting the dots (discrete -> continuous)

- Copy value of closest point?
- Linearly interpolate between two points?

- Interpolate neighboring points too?
"Best" choice depends on how much you know about where the data
 comes from.

Linear interpolation

- Two-point formula for line

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

solve for y

- Weighted average

$$
\begin{aligned}
y & =\frac{w_{1} y_{1}+w_{2} y_{2}}{w_{1}+w_{2}} \\
= & (1-f) y_{1}+f y_{2} \\
& 0 \leq f \leq 1
\end{aligned}
$$

$f=$ distance from first point as a fraction of interval width

$$
=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

Example: Shrinking disks \& resolution

How many disks will fit in the box?

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n}}=2
$$

How many disks can we see?

Example: "Xeno" disks

Example: "Xeno" disks

\% Keno Disks
Script comment (could be $\left.\begin{array}{c}\text { better...) }\end{array}\right)$
DrawRect (0,-1,2,2, \mathbf{k}^{\prime})
Setup
\% Draw 20 Keno disks
Highest-level outline
\% Keno Disks

DrawRect (0,-1, 2, 2, 'k')
\% Draw 20 Keno disks
for $k=1: 20$
\% Draw the kith disk

Pattern: repent N times
end

```
DrawRect (0,-1,2,2, 'k')
\% Draw 20 Xeno disks
\(d=1 ; \%\) Diameter of first disk |nitializl
\(\mathbf{x}=0\); \% Left tangent point "r state"
for \(k=1: 20\)
    \% Draw the kth disk
    \% Update \(x, d\) for next disk
outline: maintain
    "state"
```

```
DrawRect(0,-1,2,2,'k')
% Draw 20 Xeno disks
d= 1;
x= 0; % Left tangent point
for k= 1:20
    % Draw the kth disk
    DrawDisk(x+d/2, 0, d/2, 'y')
                                    Refine outline
                                    w/ code
    % Update x, d for next disk
        x= x + d;
        d= d/2;
```


Here's the output... Shouldn't there be 20 disks?

The "screen" is an array of dots called pixels.

Disks smaller than the dots don't show up.

The $20^{\text {th }}$ disk has

radius<.00000I

Fading Keno disks

- First disk is yellow

■ Last disk is black (invisible)

- Interpolate the color in between

$$
\begin{aligned}
& (1-f) * \text { "yellow" }+f * \text { "black" } \\
& \text { How can we multiply, add colors? }
\end{aligned}
$$

- Most any color is a mix of red, green, and blue
- Example:

$$
\operatorname{colr}=\left[\begin{array}{lll}
0.4 & 0.6 & 0
\end{array}\right]
$$

- Each component is a number between 0 and I
- $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ is black
- [lll $\left.\begin{array}{lll}l & 1 & I\end{array}\right]$ is white

\% Draw n Xeno disks
$d=1$;
$\mathbf{x}=0$; \% Left tangent point
for $k=1: n$

```
% Draw kth disk
DrawDisk(x+d/2, 0, d/2, 'Y')
x= x+d;
d= d/2;
```

end
\% Draw n Xeno disks
$d=1$;
$\mathbf{x}=0$; \% Left tangent point
for $k=1: n$

A vector of length 3
\% Draw kth disk
DrawDisk ($x+d / 2,0, d / 2,\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$
$\mathrm{x}=\mathrm{x}+\mathrm{d}$;
$d=d / 2$;
end
\% Draw n fading Xeno disks

```
d= 1;
x= 0; % Left tangent point
yellow= [llll
black= [0 0 0}]\mathrm{ [;
for k= 1:n
    % Compute color of kth disk
```

 \% Draw kth disk
 DrawDisk (\(x+d / 2,0, d / 2, \ldots\))
 \(\mathrm{x}=\mathrm{x}+\mathrm{d}\);
 \(d=d / 2\);
 end

Example: 3 disks fading from yellow to black

```
r= 1; % radius of disk
yellow= [1 1 0];
black = [0 0 0];
```

\% Left disk yellow, at x=1
DrawDisk (1, 0, r,yellow)
\% Right disk black, at $x=5$
DrawDisk(5,0,r,black)
\% Middle disk with average color, at $x=3$
colr= 0.5*yellow + 0.5*black;
DrawDisk(3,0,r,colr)

Example: 3 disks fading from yellow to black

```
r= 1; % radius of disk
yellow= [1 1 0];
black = [0 0 0];
% Left disk yellow, at x=1
DrawDisk(1,0,r,yellow)
% Right disk black, at x=5
DrawDisk(5,0,r,black)
```

$$
\begin{aligned}
& \begin{array}{|l|l|l}
.5 \\
\hline 1 & 1 & 0 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline .5 & .5 & 0 \\
\hline
\end{array} \\
& \left..5 * \begin{array}{|l|l|l}
\hline 0 & 0 & 0 \\
\hline
\end{array}\right] \begin{array}{|l|l|l|}
\hline 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

\% Left disk yellow, at $x=1$
DrawDisk (1, 0, r, yellow)
\% Right disk black, at $x=5$
DrawDisk(5,0,r,black)

Vectorized multiplication
\% Middle disk with average color, at $x=3$
colr= 0.5*yellow + 0.5*black;
DrawDisk(3,0,r,colr)

Example: 3 disks fading from yellow to black

\% Middle disk with average color, at x=3
colr= 0.5*yellow + 0.5*black;
DrawDisk (3, 0,r,colr)

Vectorized code allows an operation on multiple values at the same time
Vectorized +

```
yellow= [1 1 0];
black = [0 0 0];
```

$$
\begin{array}{|l|l|l}
\hline .5 & .5 & 0 \\
\hline
\end{array}
$$ addition

\% Average color via vectorized op
colr $=0.5 *$ yellow $+0.5 *$ black;
Operation performed on vectors
(o Average color via scalar op
for $k=1$: length (black)
colr $(k)=0.5$ *yellow $(k)+0.5 *$ black (k);
end
\% Draw n fading Xeno disks

```
d= 1;
x= 0; % Left tangent point
yellow= [llll
black= [0 0 0}]\mathrm{ [;
for k= 1:n
    % Compute color of kth disk
```

 \% Draw kth disk
 DrawDisk (\(x+d / 2,0, d / 2, \ldots\))
 \(\mathrm{x}=\mathrm{x}+\mathrm{d}\);
 \(d=d / 2\);
 end
\% Draw n fading Xeno disks $d=1$;
$\mathbf{x}=0$; \% Left tangent point
yellow= [11 0];
black= $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$;

A	k / n
B	$\mathrm{k} /(\mathrm{n}-1)$
C	$(k-1) / n$
D	$(k-1) /(n-1)$
E	$(k-1) /(n+1)$

for $k=1: n$
\% Compute color of kth disk $\mathrm{f}=$???
colr= f*black $+(1-f) *$ yellow;
\% Draw kth disk
DrawDisk (x+d/2, 0, d/2, colr)
$\mathrm{x}=\mathrm{x}+\mathrm{d}$;
$d=d / 2$;
end

Rows of Xeno disks

$$
\text { for } y=\ldots \text { :___ }
$$

Code to draw one row of Xeno disks at some y-coordinate
end

Be careful with initializations

```
yellow=[1 1 0}];⿱丶万一\mp@code{; black=[0}0000]
d= 1;
x= 0;
for k= 1:n
    % Compute color of kth disk
    f= (k-1)/(n-1);
    colr= f*black + (1-f)*yellow;
    % Draw kth disk
    DrawDisk(x+d/2, 0, d/2, colr)
    x=x+d; d=d/2;
end
```

Where to put the loop header for $\mathrm{y}=$
yellow=[1 1 0]; black=[0 0 0 $]$;
$\mathrm{d}=1$;
C \Rightarrow
$\mathbf{x}=0$;
D \Rightarrow
for $k=1: n$
\% Compute color of kth disk
$\mathrm{f}=(\mathrm{k}-1) /(\mathrm{n}-1)$;
colr= f*black + (1-f)*yellow;
\% Draw kth disk
DrawDisk ($x+d / 2,0, d / 2$, colr)
$x=x+d$; $d=d / 2$;
end
end

How does Matlab do math?

- Matlab implements an approximation to real arithmetic
- The digital number line is discrete, not continuous
- Calculations accumulate rounding error, leading to uncertainty in results

The approximation is usually very good, but don't get caught off guard

Binary floating-point arithmetic

- Range is finite
- Precision is finite
- Precision is relative
- Fractions are not base- 10
- Smallest non-zero number: $\sim 10^{-324}$
- Going smaller will underflow to 0
- Largest finite number: $\sim 10^{308}$
- Going bigger will overflow to inf

Precision is finite

- Numbers are discrete
ex. Keep 2 digits
- Only save a small number of decimal places
- Gaps between "adjacent" numbers
- If a result falls in between two numbers, need to round the result

$$
\text { 4. } 1 \div 4=1.025
$$

$\rightarrow 1.0$

Precision is relative

- Numbers are stored in "scientific notation"
- Only save a small number of significant digits

$$
\begin{aligned}
& \text { ce. keep } 2 \text { sis figs } \\
& 1.5 \div 2=0.75 \\
&=7.5 \times 10^{-1}
\end{aligned}
$$

Fractions are not base-I0

- Digits count powers of 2 , not powers of 10
ex. 2 decimal digits us.
"simple" decimal numbers (like 0.1) fall in the gap, are approximated

4 binary digits

- Precision is roughly the same as 16 decimal digits

Most software (inc. Mat lar) can only use red \#s

Peeling back the curtain

- By default, Matlab prints 5 significant digits (format short)
- With format long, Matlab prints 16 significant digits
- To unambiguously express a double as a decimal, need I7 significant digits

Pro tip: when printing numbers that

 will be consumed by both humans and computers, use:fprintf('\%.17g', x)

"Bonus numbers"

- inf: Represents "infinity"
- Both positive and negative versions
- Larger (or smaller) than any other number
- Generated on overflow or when dividing by zero
- nan: Not-a-number
- Not equal to anything (even itself)
- Generated from 0/0, inf* $0, \ldots$

Does this script print anything?
$\mathrm{k}=0$;
while $1+1 / \mathbf{2 ヘ}^{\wedge}>1$ $\mathbf{k}=\mathbf{k}+1$;
end
disp(k)

A: No - the loop guard is always true

B:Yes, $1 / 2^{\wedge} \mathrm{k}$ will underflow to 0

C:Yes, $1+1 / 2^{\wedge} \mathrm{k}$ will round down to I

D: No - a floating-point error will stop the program

The loop DOES terminate given the limitations of floating point arithmetic!

```
k = 0;
while 1 + 1/2^k > 1
    k = k+1;
end
disp(k)
```

$1+1 / 2^{\wedge} 53$ is calculated to be just 1 , so " 53 " is printed.

Computer arithmetic is inexact

- There is error in computer arithmetic-floating point arithmeticdue to limitation in "hardware." Computer memory is finite.
- What is $1+10^{-16}$?
- I. 000000000000000 I in real arithmetic
- I in floating point arithmetic (IEEE double)
- Read Sec 4.3

