Previous Lecture:
- Probabilities and vectors in simulation

Today’s Lecture (Ch. 4):
- Discrete vs. Continuous
- Vectorized calculations
- Colors and linear interpolation
- Floating-point arithmetic

Announcements:
- Discussion this week in Hollister 401 classroom
- Project 3 due at 11pm on Wednesday, 3/4
 - No exercise check-off at this Wednesday’s office/consulting hours due to project deadline
- Prelim 1 on Tues 3/10 at 7:30pm
 - Review materials will be posted soon. An optional review session is scheduled for Sunday, 3/8 (time, location TBD)
 - Alternate exam: look out for email, and be prepared to start early (5:45pm)
Discrete vs. continuous

A plot is made from discrete values, but it can look continuous if there are many points.
Generating tables and plots

<table>
<thead>
<tr>
<th>x</th>
<th>sin(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.784</td>
<td>0.707</td>
</tr>
<tr>
<td>1.571</td>
<td>1.000</td>
</tr>
<tr>
<td>2.357</td>
<td>0.707</td>
</tr>
<tr>
<td>3.142</td>
<td>0.000</td>
</tr>
<tr>
<td>3.927</td>
<td>-0.707</td>
</tr>
<tr>
<td>4.712</td>
<td>-1.000</td>
</tr>
<tr>
<td>5.498</td>
<td>-0.707</td>
</tr>
<tr>
<td>6.283</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\[x, y \text{ are vectors. A vector is a 1-dimensional list of values} \]

\[x = \text{linspace}(0,2\times\pi,9)'; \]
\[y = \sin(x); \]
\[\text{plot}(x,y) \]
How did we get all the sine values?

Built-in functions accept vectors

<table>
<thead>
<tr>
<th>x</th>
<th>sin(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>1.57</td>
<td>1.0</td>
</tr>
<tr>
<td>3.14</td>
<td>0.0</td>
</tr>
<tr>
<td>4.71</td>
<td>-1.0</td>
</tr>
<tr>
<td>6.28</td>
<td>0.0</td>
</tr>
</tbody>
</table>

and return vectors

| 0.00 | 1.00 | 0.00 | -1.00 | 0.00 |
Connecting the dots (discrete -> continuous)

- Copy value of closest point?
- Linearly interpolate between two points?
- Interpolate neighboring points too?

“Best” choice depends on how much you know about where the data comes from.
Linear interpolation

- Two-point formula for line

\[
\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}
\]

Solve for \(y \)

- Weighted average

\[
y = \frac{w_1 y_1 + w_2 y_2}{w_1 + w_2}
\]

\[
= (1-f)y_1 + fy_2
\]

\[0 \leq f \leq 1\]
Example: Shrinking disks & resolution

How many disks will fit in the box?

$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 2$$

How many disks can we see?
Example: “Xeno” disks

Draw a sequence of 20 disks where the \((k+1)\)th disk has a diameter that is half that of the \(k\)th disk.

The disks are tangent to each other and have centers on the \(x\)-axis.

First disk has diameter 1 and center \((1/2, 0)\).
Example: “Xeno” disks

Repeating process
What do you need to keep track of?

- Diameter (d)
- Position
 - Left tangent point (x)

<table>
<thead>
<tr>
<th>Disk</th>
<th>x</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0+1</td>
<td>1/2</td>
</tr>
<tr>
<td>3</td>
<td>0+1+1/2</td>
<td>1/4</td>
</tr>
</tbody>
</table>
% Xeno Disks

DrawRect(0,-1,2,2,'k')

% Draw 20 Xeno disks

 SETUP

Highest-level outline

Script comment (could be better...)
% Xeno Disks

DrawRect(0,-1,2,2,'k')
% Draw 20 Xeno disks

for k = 1:20
 % Draw the kth disk
end

Pattern: repeat \(N \) times
\% Xeno Disks

\texttt{DrawRect(0,-1,2,2,'k')} \% Draw 20 Xeno disks
\texttt{d= 1; \% Diameter of first disk}
\texttt{x= 0; \% Left tangent point}
\texttt{for \ k= 1:20}
\hspace{1cm} \% Draw the kth disk
\hspace{1cm} \% Update x, d for next disk
\texttt{end}
% Xeno Disks

DrawRect(0,-1,2,2,'k')
% Draw 20 Xeno disks

d = 1;
x = 0; % Left tangent point
for k = 1:20
 % Draw the kth disk
 DrawDisk(x+d/2, 0, d/2, 'y')
 % Update x, d for next disk
 x = x + d;
d = d/2;
end
Here’s the output… Shouldn’t there be 20 disks?

The “screen” is an array of dots called pixels.

Disks smaller than the dots don’t show up.

The 20th disk has radius\textless0.000001
Fading Xeno disks

- First disk is yellow
- Last disk is black (invisible)
- Interpolate the color in between

\[(1 - f) \times \text{"yellow"} + f \times \text{"black"}\]

How can we multiply, add colors?
Color can be represented by a 3-vector storing RGB values

- Most any color is a mix of red, green, and blue
- Example: \[
\text{colr} = [0.4 \ 0.6 \ 0]
\]
- Each component is a number between 0 and 1
- \([0 \ 0 \ 0]\) is black
- \([1 \ 1 \ 1]\) is white
% Draw n Xeno disks

d = 1;
x = 0; % Left tangent point

for k = 1:n

% Draw kth disk
DrawDisk(x+d/2, 0, d/2, 'y')
x = x+d;
d = d/2;
end
% Draw n Xeno disks

d = 1;
x = 0; % Left tangent point

for k = 1:n

 % Draw kth disk
 DrawDisk(x+d/2, 0, d/2, [1 1 0])
 x = x+d;
 d = d/2;

end

A vector of length 3
% Draw n fading Xeno disks

d = 1;
x = 0; % Left tangent point
yellow = [1 1 0];
black = [0 0 0];

for k = 1:n
 % Compute color of kth disk

 % Draw kth disk
 DrawDisk(x+d/2, 0, d/2, _______)
x = x+d;
d = d/2;
end
Example: 3 disks fading from yellow to black

\texttt{r = 1; \% radius of disk}
\texttt{yellow= [1 1 0];}
\texttt{black = [0 0 0];}

\texttt{\% Left disk yellow, at x=1}
\texttt{DrawDisk(1,0,r,yellow)}

\texttt{\% Right disk black, at x=5}
\texttt{DrawDisk(5,0,r,black)}

\texttt{\% Middle disk with average color, at x=3}
\texttt{colr = 0.5*yellow + 0.5*black;}
\texttt{DrawDisk(3,0,r,colr)}
Example: 3 disks fading from yellow to black

\[
\begin{align*}
r &= 1; \quad \text{\% radius of disk} \\
yellow &= [1 \ 1 \ 0]; \\
black &= [0 \ 0 \ 0]; \\
\end{align*}
\]

\[
\begin{align*}
\% \text{ Left disk yellow, at } x=1 \\
\text{DrawDisk}(1,0,r,\text{yellow}) \\
\% \text{ Right disk black, at } x=5 \\
\text{DrawDisk}(5,0,r,\text{black}) \\
\% \text{ Middle disk with average color, at } x=3 \\
colr &= 0.5 \times \text{yellow} + 0.5 \times \text{black}; \\
\text{DrawDisk}(3,0,r,\text{colr}) \\
\end{align*}
\]
Example: 3 disks fading from yellow to black

\[
\begin{align*}
\text{r} &= 1; \quad \% \text{ radius of disk} \\
\text{yellow} &= \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}; \\
\text{black} &= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}; \\
\% \text{ Left disk yellow, at } x=1 \\
\text{DrawDisk}(1,0,r,\text{yellow}) \\
\% \text{ Right disk black, at } x=5 \\
\text{DrawDisk}(5,0,r,\text{black}) \\
\% \text{ Middle disk with average color, at } x=3 \\
\text{colr} &= 0.5 \times \text{yellow} + 0.5 \times \text{black}; \\
\text{DrawDisk}(3,0,r,\text{colr})
\end{align*}
\]
Vectorized code allows an operation on multiple values at the same time.

yellow = [1 1 0];
black = [0 0 0];

% Average color via vectorized op
colr = 0.5 * yellow + 0.5 * black;

% Average color via scalar op
for k = 1:length(black)
 colr(k) = 0.5 * yellow(k) + 0.5 * black(k);
end

Vectorized addition:

\[
\begin{bmatrix}
0.5 \\
0.5 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.5 \\
0.5 \\
0
\end{bmatrix}
\]
% Draw n fading Xeno disks

d= 1;
x= 0; % Left tangent point
yellow= [1 1 0];
black= [0 0 0];

for k= 1:n

 % Compute color of kth disk

 % Draw kth disk
 DrawDisk(x+d/2, 0, d/2, _______)
x= x+d;
d= d/2;

end
% Draw n fading Xeno disks

d = 1;
x = 0; % Left tangent point
yellow = [1 1 0];
black = [0 0 0];

for k = 1:n

% Compute color of kth disk
f = ???
colr = f*black + (1-f)*yellow;

% Draw kth disk
DrawDisk(x+d/2, 0, d/2, colr)

x = x+d;
d = d/2;

end
Rows of Xeno disks

for y = ___ : ___ : ___

Code to draw one row of Xeno disks at some y-coordinate

end

Be careful with initializations
yellow=[1 1 0]; black=[0 0 0];

d= 1;

x= 0;

for k= 1:n
% Compute color of kth disk
f= (k-1)/(n-1);
colr= f*black + (1-f)*yellow;
% Draw kth disk
DrawDisk(x+d/2, 0, d/2, colr)
x=x+d; d=d/2;
end
yellow=[1 1 0]; black=[0 0 0];

d= 1;
x= 0;

for k= 1:n
 \% Compute color of kth disk
 f= (k-1)/(n-1);
 colr= f*black + (1-f)*yellow;
 \% Draw kth disk
 DrawDisk(x+d/2, 0, d/2, colr)
 x=x+d; d=d/2;
end
How does Matlab do math?

- Matlab implements an *approximation* to real arithmetic
- The digital number line is *discrete*, not continuous
- Calculations accumulate rounding error, leading to *uncertainty* in results

The approximation is usually very good, but don’t get caught off guard
Binary floating-point arithmetic

- Range is finite
- Precision is finite
- Precision is relative
- Fractions are not base-10

- Smallest non-zero number: $\sim 10^{-324}$
 - Going smaller will underflow to 0
- Largest finite number: $\sim 10^{308}$
 - Going bigger will overflow to inf
Precision is finite

- Numbers are discrete
 - Only save a small number of decimal places
 - Gaps between “adjacent” numbers
- If a result falls in between two numbers, need to **round** the result

Example: Keep 2 digits

\[4.1 \div 4 = 1.025 \]

\[\Rightarrow 1.0 \]
Precision is relative

- Numbers are stored in “scientific notation”
 - Only save a small number of significant digits

\[
\sqrt{5} \div 2 = 0.75
\]

\[
= 7.5 \times 10^{-1}
\]
Fractions are not base-10

- Digits count powers of 2, not powers of 10
- “simple” decimal numbers (like 0.1) fall in the gap, are approximated
- Precision is roughly the same as 16 decimal digits

```
ex. 2 decimal digits vs. 4 binary digits

"1.1" → 1.125
```

Most software (incl. Matlab) can only use real #s
Peeling back the curtain

- By default, Matlab prints 5 significant digits (format short)
- With format long, Matlab prints 16 significant digits
- To unambiguously express a double as a decimal, need 17 significant digits

Pro tip: when printing numbers that will be consumed by both humans and computers, use:

```
fprintf('%.17g', x)
```
“Bonus numbers”

- **inf**: Represents “infinity”
 - Both positive and negative versions
 - Larger (or smaller) than any other number
 - Generated on overflow or when dividing by zero

- **nan**: Not-a-number
 - Not equal to anything (even itself)
 - Generated from $0/0$, $\text{inf}*0$, …
Does this script print anything?

```matlab
k = 0;
while 1 + 1/2^k > 1
    k = k + 1;
end
disp(k)
```

A: No – the loop guard is always true

B: Yes, $1/2^k$ will underflow to 0

C: Yes, $1+1/2^k$ will round down to 1

D: No – a floating-point error will stop the program
The loop DOES terminate given the limitations of floating point arithmetic!

```
k = 0;
while 1 + 1/2^k > 1
    k = k+1;
end
disp(k)
```

1 + 1/2^53 is calculated to be just 1, so “53” is printed.
Computer arithmetic is *inexact*

- There is error in computer arithmetic—floating point arithmetic—due to limitation in “hardware.” Computer memory is *finite*.

- What is $1 + 10^{-16}$?
 - 1.0000000000000001 in real arithmetic
 - 1 in floating point arithmetic (IEEE double)

- Read Sec 4.3