
◼ Previous Lecture:

◼ Probabilities and vectors in simulation

◼ Today’s Lecture (Ch. 4):
◼ Discrete vs. Continuous

◼ Vectorized calculations

◼ Colors and linear interpolation

◼ Floating-point arithmetic

◼ Announcements:
◼ Discussion this week in Hollister 401 classroom

◼ Project 3 due at 11pm on Wednesday, 3/4
◼ No exercise check-off at this Wednesday’s office/consulting hours due to project 

deadline 

◼ Prelim 1 on Tues 3/10 at 7:30pm
◼ Review materials will be posted soon.  An optional review session is scheduled for 

Sunday, 3/8 (time, location TBD)

◼ Alternate exam: look out for email, and be prepared to start early (5:45pm)



Discrete vs. continuous

A plot is made from discrete 
values, but it can look continuous if 
there are many points



Generating tables and plots

x     sin(x)

0.000    0.000

0.784    0.707

1.571    1.000

2.357    0.707

3.142    0.000

3.927   -0.707  

4.712   -1.000

5.498   -0.707

6.283    0.000

x= linspace(0,2*pi,9)';

y= sin(x);

plot(x,y)



Built-in functions accept vectors

x     sin(x)

0.00     0.0

1.57     1.0

3.14     0.0

4.71    -1.0

6.28     0.0

0.00 1.57 3.14 4.71 6.28

sin()

0.00 1.00 0.00 -1.00 0.00

and return vectors

How did we get all the sine values?



Connecting the dots (discrete -> continuous)

◼ Copy value of closest point?

◼ Linearly interpolate between 

two points?

◼ Interpolate neighboring points too?

“Best” choice depends on how much 

you know about where the data 

comes from.



Linear interpolation

◼ Two-point formula for line

◼ Weighted average



How many disks 

will fit in the box?

Example: Shrinking disks & resolution

How many disks 

can we see?



Example: “Xeno” disks

x

Draw a sequence of 20 disks 

where the (k+1)th disk has a 

diameter that is half that of 

the kth disk.  

The disks are tangent to 

each other and have centers 

on the x-axis.

First disk has diameter 1 and 

center (1/2, 0).



Example: “Xeno” disks
Repeating process
What do you need to 

keep track of?

• Diameter (d)

• Position

Left tangent point (x)

Disk    x                  d
-------------------------------

1       0                     1
2       0+1            1/2       
3       0+1+1/2   1/4



% Xeno Disks

DrawRect(0,-1,2,2,'k')

% Draw 20 Xeno disks



% Xeno Disks

DrawRect(0,-1,2,2,'k')

% Draw 20 Xeno disks

for k= 1:20

% Draw the kth disk

end



% Xeno Disks

DrawRect(0,-1,2,2,'k')

% Draw 20 Xeno disks

d= 1;  % Diameter of first disk

x= 0;  % Left tangent point

for k= 1:20

% Draw the kth disk

% Update x, d for next disk

end



% Xeno Disks

DrawRect(0,-1,2,2,'k')

% Draw 20 Xeno disks

d= 1;  

x= 0;  % Left tangent point

for k= 1:20

% Draw the kth disk

DrawDisk(x+d/2, 0, d/2, ‘y’)

% Update x, d for next disk

x= x + d;

d= d/2;

end



Here’s the output…  Shouldn’t there be 20 disks?

The “screen” is an array of 

dots called pixels.

Disks smaller than the dots 

don’t show up.

The 20th disk has 

radius<.000001



Fading Xeno disks 

◼ First disk is yellow

◼ Last disk is black 

(invisible)

◼ Interpolate the color in 

between



Color can be represented by a 3-vector storing 

RGB values

◼ Most any color is a mix of red, green, and blue

◼ Example:

colr= [0.4  0.6  0]

◼ Each component is a number between

0 and 1

◼ [0  0  0]  is black

◼ [1  1  1]  is white



% Draw n Xeno disks

d= 1;  

x= 0;  % Left tangent point

for k= 1:n

% Draw kth disk

DrawDisk(x+d/2, 0, d/2, ‘y’)

x= x+d;

d= d/2;

end



% Draw n Xeno disks

d= 1;  

x= 0;  % Left tangent point

for k= 1:n

% Draw kth disk

DrawDisk(x+d/2, 0, d/2, [1 1 0])

x= x+d;

d= d/2;

end

A vector of length 3



% Draw n fading Xeno disks

d= 1;  

x= 0;  % Left tangent point

yellow= [1 1 0];

black=  [0 0 0];

for k= 1:n

% Compute color of kth disk

% Draw kth disk

DrawDisk(x+d/2, 0, d/2, _______)

x= x+d;

d= d/2;

end



Example:  3 disks fading from yellow to black

r= 1;  % radius of  disk

yellow= [1 1 0];

black = [0 0 0];

% Left disk yellow, at x=1

DrawDisk(1,0,r,yellow)

% Right disk black, at x=5

DrawDisk(5,0,r,black)

% Middle disk with average color, at x=3

colr= 0.5*yellow + 0.5*black;

DrawDisk(3,0,r,colr)



Example:  3 disks fading from yellow to black

r= 1;  % radius of  disk

yellow= [1 1 0];

black = [0 0 0];

% Left disk yellow, at x=1

DrawDisk(1,0,r,yellow)

% Right disk black, at x=5

DrawDisk(5,0,r,black)

% Middle disk with average color, at x=3

colr= 0.5*yellow + 0.5*black;

DrawDisk(3,0,r,colr)

.5 011* 0.5.5

.5 000* 000

Vectorized 
multiplication



Example:  3 disks fading from yellow to black

r= 1;  % radius of  disk

yellow= [1 1 0];

black = [0 0 0];

% Left disk yellow, at x=1

DrawDisk(1,0,r,yellow)

% Right disk black, at x=5

DrawDisk(5,0,r,black)

% Middle disk with average color, at x=3

colr= 0.5*yellow + 0.5*black;

DrawDisk(3,0,r,colr)

0.5.5

000

+

0.5.5=

Vectorized 
addition



Vectorized code allows an operation on multiple 

values at the same time 

yellow= [1 1 0];

black = [0 0 0];

% Average color via vectorized op

colr= 0.5*yellow + 0.5*black;

% Average color via scalar op

for k = 1:length(black)

colr(k)= 0.5*yellow(k) + 0.5*black(k);

end

0.5.5

000

+

0.5.5=

Vectorized 
addition

Operation performed on vectors

Operation performed on scalars



% Draw n fading Xeno disks

d= 1;  

x= 0;  % Left tangent point

yellow= [1 1 0];

black=  [0 0 0];

for k= 1:n

% Compute color of kth disk

% Draw kth disk

DrawDisk(x+d/2, 0, d/2, _______)

x= x+d;

d= d/2;

end



% Draw n fading Xeno disks

d= 1;  

x= 0;  % Left tangent point

yellow= [1 1 0];

black=  [0 0 0];

for k= 1:n

% Compute color of kth disk

f= ???

colr= f*black + (1-f)*yellow;

% Draw kth disk

DrawDisk(x+d/2, 0, d/2, colr)

x= x+d;

d= d/2;

end

k/n

k/(n-1)

(k-1)/n

(k-1)/(n-1)

(k-1)/(n+1)

A

B

C

D

E



Rows of Xeno disks 

Code to draw one

row of Xeno disks

at some y-coordinate

for y = __ : __ : __

end



yellow=[1 1 0];  black=[0 0 0];

d= 1;  

x= 0;

for k= 1:n

% Compute color of kth disk

f= (k-1)/(n-1);

colr= f*black + (1-f)*yellow;

% Draw kth disk

DrawDisk(x+d/2, 0, d/2, colr)

x=x+d;  d=d/2;

end



yellow=[1 1 0];  black=[0 0 0];

d= 1;  

x= 0;

for k= 1:n

% Compute color of kth disk

f= (k-1)/(n-1);

colr= f*black + (1-f)*yellow;

% Draw kth disk

DrawDisk(x+d/2, 0, d/2, colr)

x=x+d;  d=d/2;

end

Where to put the loop header  for y=__:__:__

B

C

D

A

end

y



How does Matlab do math?

◼ Matlab implements an approximation to real arithmetic

◼ The digital number line is discrete, not continuous

◼ Calculations accumulate rounding error, leading to uncertainty in 

results

The approximation is usually very good, but don’t get caught off guard



Binary floating-point arithmetic

◼ Range is finite

◼ Precision is finite

◼ Precision is relative

◼ Fractions are not base-10

◼ Smallest non-zero number: ~10-324

◼ Going smaller will underflow to 0

◼ Largest finite number: ~10308

◼ Going bigger will overflow to inf



Precision is finite

◼ Numbers are discrete

◼ Only save a small number of decimal 

places

◼ Gaps between “adjacent” numbers

◼ If a result falls in between two 

numbers, need to round the result



Precision is relative

◼ Numbers are stored in “scientific 

notation”

◼ Only save a small number of 

significant digits



Fractions are not base-10

◼ Digits count powers of 2, not 

powers of 10

◼ “simple” decimal numbers (like 0.1) 

fall in the gap, are approximated

◼ Precision is roughly the same as 16 

decimal digits



Peeling back the curtain

◼ By default, Matlab prints 5 

significant digits (format short)

◼ With format long, Matlab prints 

16 significant digits

◼ To unambiguously express a double 

as a decimal, need 17 significant 

digits

Pro tip: when printing numbers that 

will be consumed by both humans and

computers, use:

fprintf('%.17g', x)



“Bonus numbers”

◼ inf: Represents “infinity”

◼ Both positive and negative versions

◼ Larger (or smaller) than any other number

◼ Generated on overflow or when dividing by zero

◼ nan: Not-a-number

◼ Not equal to anything (even itself)

◼ Generated from 0/0, inf*0, …



Does this script print anything?

k= 0;

while 1 + 1/2^k > 1

k= k + 1;

end

disp(k)

A: No – the loop guard is always true

B: Yes, 1/2^k will underflow to 0

C: Yes, 1+1/2^kwill round down to 1

D: No – a floating-point error will

stop the program



41

The loop DOES terminate given the limitations of 

floating point arithmetic!

k = 0;

while 1 + 1/2^k > 1

k = k+1;

end

disp(k)

1 + 1/2^53 is calculated to be just 1, 
so “53” is printed.



Computer arithmetic is inexact

◼ There is error in computer arithmetic—floating point arithmetic—

due to limitation in “hardware.”  Computer memory is finite.

◼ What is 1 + 10-16 ? 

◼ 1.0000000000000001 in real arithmetic

◼ 1 in floating point arithmetic (IEEE double)

◼ Read Sec 4.3


