- Previous Lecture:
- Functions and expressions
- 1-d array-vector
- Today, Lecture 11:
- Probability and random numbers
- Examples of vectors and simulation
- Loop patterns for processing a vector (watch video)
- Announcements:
- Exercise 6 (Matlab Grader) due Mon, March 2
- Project 3 due Wed, March 4, at 11pm
- Social lunch Friday 12:20pm Okenshields (sign up on website)
function [xNew, yNew] = Centralize (x,y) \% Translate polygon defined by vectors \% x, y such that the centroid is on the \% origin. New polygon defined by vectors \% xNew,yNew.

```
n= length(x);
```

sum returns the sum of all values in the vector
xNew= zeros ($\mathrm{n}, 1$) ; yNew= zeros ($\mathrm{n}, 1$);
xBar= sum(x)/n; yBar= sum(y)/n;
for $k=1: n$
xNew (k) = $x(k)-x B a r ;$
y New $(k)=y(k)-y B a r ;$
end

Read Insight 6.3 for the rest of the story

For-loop pattern for working with a vector
\% Given a vector v
for $k=1$:length(v)
\% Work with v(k)
\% E.g., disp(v(k))
end

| 5.4 | 1.3 | -3.1 |
| :--- | :--- | :--- | :--- |

\% Count odd values in vector v count= 0 ;
for $k=1: l e n g t h(v)$
if $\operatorname{rem}(v(k), 2)==1$ count $=$ count +1 ;
end
end
\% Pair sums of vector v $s=$ zeros $(1$, length (v) -1) for $k=1:$ length (v)-1 $s(k)=v(k)+v(k+1) ;$ end

Simulation

- Imitates real system
- Requires judicious use of random numbers
- Requires many trials, or multiple points in time - \rightarrow opportunity to practice working with vectors!

Example: rolling dice

Roll 2 fair dice

Random numbers

- Pseudorandom numbers in programming
- Sequence is reproducible if seeded (e.g., rng(42) at start of script)
- Function rand () generates random real numbers in the interval $(0, I)$. All numbers in the interval $(0, I)$ are equally likely to occuruniform probability distribution.
- Examples:

rand ()	one random \# in (0, I)
$6 *$ rand ()	one random \# in (0,6)
6 *rand () +1	one random \# in (I,7)

Step I: Simulate a fair 6-sided die

Which expression(s) below will give a random integer in [1..6] with equal likelihood?

A round (rand () * 6)
B ceil (rand () * 6)
C Both expressions above

round (rand () *6)

ceil (rand () *6)

Step 2: Keep track of results

Possible outcomes from rolling a fair 6-sided die

Simulation

Simulation result

Simulation result

counts	51	60	59	55	59	54
	1	2	3	4	5	6

Keep tally on repeated rolls of a fair die Repeat the following:
\% roll the die
\% increment correct "bin"

```
function counts = rollDie(rolls)
```

```
FACES = 6; \(\quad\) \#faces on die
counts \(=\) zeros (1,FACES);
counts \begin{tabular}{c|c|c|c|c|c|}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\cline { 2 - 7 } & \\
& & & & & \\
\hline
\end{tabular}
\% Count outcomes of rolling a FAIR die
for \(k=1:\) rolls
    \% Roll the die
    face= ceil(rand()*FACES);
    \% Increment the appropriate bin
end
```

\% Show histogram of outcome


```
function counts = rollDie(rolls)
```


\% Show histogram of outcome
\% Simulate the rolling of 2 fair dice totalOutcome= ???
\(\left.\begin{array}{|l|l}\hline A \& \operatorname{ceil}(\operatorname{rand}() * 12)

B \& \operatorname{ceil}(\operatorname{rand}() * 11)+1

C \& floor(\operatorname{rand}() * 11)+2\end{array}\right\}\)| Single $\operatorname{rand}()$ rill |
| :--- |
| \Rightarrow Uniform |
| distribution |

D 2 of the above
E None of the above

$$
\begin{aligned}
\left.C e_{i l}(\operatorname{rand}() * 6)+C_{i} 1(\operatorname{rand}) * 6\right) & \begin{aligned}
& \text { Two randi) ails summat } \\
& \Rightarrow \text { distribution not } \\
& \text { obvious }
\end{aligned} \\
& \Rightarrow \text { sim! }
\end{aligned}
$$

2-dimensional random walk

$$
\mathrm{N}=11 \text { Hops }=67
$$

Start in the middle tile, $(0,0)$.

For each step, randomly choose between N,E,S,W and then walk one tile.
Each tile is $|\times|$.
Walk until you reach
 the boundary.
function $[\mathrm{x}, \mathrm{Y}]=$ RandomWalk2D (N)
\% 2D random walk in $2 N-1$ by $2 N-1$ grid.
\% Walk randomly from $(0,0)$ to an edge.
\% Vectors x, y represent the path.

By the end of the function ...
\square
y \square

function $[\mathrm{x}, \mathrm{y}]=$ RandomWalk2D (N)

$\mathrm{k}=0$; $\quad \mathrm{xc}=0$; $\quad \mathrm{yc}=0$;
while current position not past an edge \% Choose random dir, update xc,yc
\% Record new location in \mathbf{x}, y
end

function $[\mathrm{x}, \mathrm{y}]=$ RandomWalk2D (N)

$\mathrm{k}=0$; $\quad \mathrm{xc}=0$; $\quad \mathrm{yc}=0$;
while abs (xc)<N \&\& abs (yc)<N
\% Choose random dir, update xc,yc
\% Record new location in x, y

$$
\mathrm{k}=\mathrm{k}+1 \text {; } \quad \mathrm{x}(\mathrm{k})=\mathrm{xc} ; \quad \mathrm{y}(\mathrm{k})=\mathrm{yc} \text {; }
$$

end

Making a random choice

- Likelihood of rand() being between two numbers is proportional to their difference width
\% Standing at (xc,yc)
\% Randomly select a step

$$
r=\text { rand }() ;
$$

$$
\text { if } r<0.25
$$

$$
y c=y c+1 ; \% \text { north }
$$

$$
\text { elseif r < } 0.5
$$

$$
\mathrm{xc}=\mathrm{xc}+1 ; \% \text { east }
$$

$$
\text { elseif } r<0.75
$$

$$
y c=y c-1 ; \% \text { south }
$$

else

$$
\mathrm{xc}=\mathrm{xc}-1 ; \quad \text { west }
$$

end

Custom likelihoods

- Suppose you want outcomes with the following likelihoods: I7\%, 26\%, I2\%, 55\%
What should the thresholds be? Do these even add up to 100% ?
- Trick: keep a running sum of the widths

Exercise

- Write a program fragment that calculates the cumulative sums of a given vector \mathbf{v}.
- The cumulative sums should be stored in a vector of the same length as v .
$\mathrm{I}, 3,5,0 \mathrm{v}$
$\mathrm{I}, 4,9,9$ cumulative sums of v

$$
\begin{aligned}
& \text { V } \\
& \operatorname{csum}|1| 1 \mid \quad \operatorname{csum}(k)=\operatorname{csum}(k-1)+v(k) \\
& \operatorname{csum}(3)=v(1)+v(2)+v(3) \\
& \operatorname{csum}(4)=\underbrace{v(1)+v(2)+v(3)}+v(4) \\
& \text { cum (3) } \\
& \operatorname{csum}(1)=V(1) ; \\
& \text { for } k=2 \text { : length }(v) \\
& \operatorname{csum}(k)=\operatorname{csum}(k-1)+v(k) ; \\
& \text { end }
\end{aligned}
$$

Demo: Random walk with biased probabilities

Loop patterns for processing a vector

```% Given a vector v for k=1:length(v) % Work with v(k) % E.g., disp(v(k)) end```	```% Given a vector v k = 1; while k<=length(v) % and possibly other % continuation conditions % Work with v(k) % E.g., disp(v(k))```
	$\mathbf{k}=\mathbf{k}+1 ;$   end

