
◼ Previous Lecture:
◼ Executing a user-defined function
◼ Function scope
◼ Subfunction

◼ Today’s Lecture:
◼ 1-d array—vector
◼ Simulation using random numbers, vectors

◼ Announcements:
◼ No lec/dis Tues due to Feb Break. See course website for reduced office

hours. See CMS for tutoring slots.
◼ Next week’s Ex6 to be done online. Wed dis sections (10:10am–3:20pm)

are converted to office hrs (focus on Ex6). All students are welcome at
these office hrs.

◼ Project 3 due Wednesday 3/4 at 11pm
◼ Prelim 1 Tues 3/10 at 7:30pm. Tell us now if you have an exam conflict—

see Exams page of course website. Email Amy Elser <ahf42@cornell.edu>
with your conflict info (course no., instructor email, conflict time, etc.)

Execute the statement
y= foo(x)

◼ Matlab looks for function foo (m-file called foo.m)

◼ Argument (value of x) is copied into function foo’s local
parameter

◼ Local parameter (v) lives in function’s own workspace

◼ called “pass-by-value,” one of several argument passing
schemes used by programming languages

◼ Function code executes within its own workspace

◼ At the end, the function’s output argument (value of w)
is sent from the function to the place that calls the
function. E.g., the value is assigned to y.

◼ Function’s workspace is deleted

◼ If foo is called again, it starts with a new, empty workspace

function w = foo(v)

w= v + rand();

File foo.m

Analogy: stack of scratch paper

◼ All of your work is done on one sheet of scratch paper

◼ To call a function, first evaluate the arguments you will pass to it,

based on the contents of your paper

◼ Copy those argument values to the next sheet of paper in the

stack, labeled with parameter names

◼ Pass the stack to a friend (keeping your original sheet)

◼ Friend evaluates function, circles final answer, crosses out

everything else

◼ You copy final answer to your sheet, then continue working

y= 3;

x= 1;

x= f(y,x);

y= x;

disp(y)

function y = f(x,y)

x= y + 1;

y= x + 1;

Trace 2: What is the output?

A: 3 B: 4 C: 5 D: 6 E: 7

Function f memory spaceScript’s memory space

Functions and expressions

◼ Expressions may be passed as

function arguments

◼ Returned values may be used in

expressions

◼ Combine for effect

y= max(2*x – 1, 0);

fprintf('%f\n', ...
100*abs(d)/y)

c= max(min(x^2.4, 255), 0);

User-defined functions work just like built-in functions

Do these do the same thing?

meas= randDouble(6, 6+3) + …
randDouble(1-2, 1);

sLo= 6; sHi= sLo + 3;

samp= randDouble(sLo, sHi);

nHi= 1; nLo= nHi - 2;

noise= randDouble(nLo, nHi);

meas= samp + noise;

A: No – one has an error

B: No – they compute meas differently

C: Yes, but one pattern is better in every way

D: Yes, and neither is superior in all cases

New topic:

Vectors

Simple data: 1-dimensional arrays

[162 150 164 177 163 184]

1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

Outcomes from 1000 rolls of 1 fair dice

Outcome

C
o

u
n

t

0 50 100 150 200 250 300
-2

0

2

4

6

8

10

12

14

16

18
x 10

4

Time (seconds)
H

e
ig

h
t
(f

e
e
t)

Rocket Height vs Time

b=60

b=80

b=90

b=100

Drawing a single line segment

x1= 0; % x-coord of pt 1

y1= 1; % y-coord of pt 1

x2= 5; % x-coord of pt 2

y2= 3; % y-coord of pt 2

plot([x1 x2], [y1 y2], '-*')

x-values
(a vector)

y-values
(a vector)

Line/marker
format

Making an x-y plot

xs= [0 4 3 8]; % x-coords

ys= [1 2 5 3]; % y-coords

plot(xs, ys, '-*')

x-values
(a vector)

y-values
(a vector)

Line/marker
format

0 2 4 6 8 10
0

1

2

3

4

5

6

1-d array: vector

◼ An array is a collection of like data organized into rows and

columns

◼ A 1-d array is a row or a column, called a vector

◼ An index identifies the position of a value in a vector

0.8 0.2 1

1 2 3

v

Here are a few different ways to create a vector

count= zeros(1,6)

a= linspace(12,24,5)

b= 7:-2:0

c= [3 7 2 1]

d= [3; 7; 2]

e= d'

0 0 0 0 0count 0

12 15 18 21 24a

3 7 2 1c

3

7

2

d

Similar functions: ones(), rand()

7 5 3 1b

3 7 2e

Array index starts at 1

Let k be the index of vector x, then

◼ k must be a positive integer

◼ 1 <= k && k <= length(x)

◼ To access the kth element: x(k)

5 .4 .91 -4 -1 7x

1 2 3 4 5 6

Accessing values in a vector

Given the vector score …

score(4)= 80;

score(5)= (score(4)+score(5))/2;

k= 1;

score(k+1)= 99;

93 92 87 0 90 82

1 2 3 4 5 6

score 99 80 85

See plotComparison2.m

After

Before

Centralize a polygon

Move a polygon so that the centroid

of its vertices is at the origin

Store coordinates

of the vertices in

vectors x and y

x y

x= [0 2 4];
y= [0 3 0];

(0,0)

(2,3)

(4,0)

෍
𝑘
𝑥𝑘 = 0 + 2 + 4 = 6

෍
𝑘
𝑦𝑘 = 0+ 3 + 0 = 3

(2,1)

function [xNew,yNew] = Centralize(x,y)

% Translate polygon defined by vectors

% x,y such that the centroid is on the

% origin. New polygon defined by vectors

% xNew,yNew.

n= length(x);

xNew= zeros(n,1); yNew= zeros(n,1);

xBar= sum(x)/n; yBar= sum(y)/n;

for k = 1:n

xNew(k)= x(k) - xBar;

yNew(k)= y(k) - yBar;

end

sum returns the sum of
all values in the vector

x y

1

2

n
⁞

⁞
k

