m Previous lecture

s User-defined functions
= Differences vs. scripts
= When and how to write

= Today’s lecture

s User-defined functions
Declaration and invocation
Subfunctions

Function scope—did you watch MatTV epsiode “Executing a
Function”?

Why functions?

r Announcements

= Discussion this week in classroom (Hollister 401)

= Prelim 1 Tues 3/10 at 7:30pm. Tell us now if you have an exam
conflict. Email Amy Elser <ahf42@cornell.edu> with your conflict
info (course no., instructor email, conflict time, etc.)

c= input('How many concentric rings? ');
d= input('How many dots? ');

% Put dots btwn circles with radii rRine and (rRing-1)
for rRing= 1:c polar2xy.m 4
% Draw d dots

for count= 1:d

function [x, y] = polar2xy(r,
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).

% Generate random dot locat:% theta is in degrees.

theta=

r= rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

% Convert from polar to Cari

[x,y] = polar2xy(r,theta) ;

% Use plot to draw dot
end
end

Review

Two perspectives: User vs. Provider

User wants to write:

% Generate random polar

% Conv
[xDart, yDart]= ...

ion to Cartesian

polar2xy(dist, angle);

% Mark position with r;:\:§?5§€:::

plot(xDart, yDart,

'‘ro')

Provider must write:

PR

function [x,y] = polar2xy(r,th)

% Convert polar coordina
Cartesian

% r 1is radius, th i le in
degrees.

rads= th*pi

Header example (declaration): [provider]

function [x, y] = polar2xy(r, theta)
A

N\

Input parameter

Function name list enclosed In

(This file’s name is ()
polar2xy.m)

Output

parameter list Call example (invocation): [user]

enclosed in | |

[retl, ret2]= polar2xy(argl, arg2);

General form of a user-defined function [provider]

function [outl, out2, ...] = functionName (inl, in2, ...)
% |-line comment to describe the function
% Additional description of function and parameters

Executable code that at some point assigns
values to output parameters outl, out2, ...

= inl,in2, ... are defined when the function begins execution.
Variables inl, in2, ... are called function parameters and they hold
the function arguments used when the function is invoked (called).

m outl, outZ, ... are not defined until the executable code in the
function assigns values to them.

Comments in functions

Block of comments after the function header is
printed whenever a user types

help <functionName>
at the Command Window

|5t [ine of this comment block is searched whenever a
user types

lookfor <someWord>
at the Command Window

Every function should have a comment block after the
function header that says concisely what the function
does and what the parameters mean

Returning a value # printing a value

You have this function: [provider]

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y). Theta in degrees.

X= .y Y= g

Code to call the above function: [user]

% Convert polar (rl,tl) to Cartesian (x1,yl)
rl=1; tl1l= 30;

[x1, yl]= polar2xy(rl, t1);

plot(x1, yl, 'b*")

Returning a value # printing a value

You have this function: [provider]

function [x, y]| = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y). Theta in degrees.

Forintf('x= %65 y= %FAN's wr)

Code to call the above function: [user]

% Convert polar (rl,tl) to Cartesian (x1,yl)

rl=1; tl1l= 30;

[x1;-yi]= polar2xy(rl, t1); .
et LA Pl +&Tfﬁﬁf
D s ol |

= p)i&pjzé %fiéﬁ{gagu&\ _—

—

R —

Given this function header:

function m = convertLength(ft, in)
% Convert length from feet (ft) and inches (in)
% to meters (m).

How many proper calls to convertLength() are shown below?
% Given £ and n
d= convertlength(f, n);
d= convertlLength (£f*12 + n);
d= convertlLength(f + n/12);
x= min (convertLength(f, n), 1);
= convertLength (pi*(f + n/12)*2);

i oy
.....§-§g
muom).%

[}
T

Functions step-by-step

2.

3.

4.

|dentify candidates

Look for opportunities to reuse logic or improve clarity

Design interface

Name, inputs, outputs, side effects

Implement function
“Write code”

Test

Try it out (and try to break it)
Use

Reasons to use functions

m Code can be reused
= Easier to test
m Clearer to read
= Reflects top-down design

= Separates concerns (“what” vs. “how”)

= Can divide work [user] [provider]

s More maintainable

Demo

c= input('How many concentric rings? ') ;
d= input('How many dots per ring? ');

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing = 1l:c

% Draw d dots

for count = 1:d

% Generate random dot location (polar coord.)

% Convert coord from polar toewCartesian

Each task becomes a
% Use plot to draw dot func’rion that can be
end implemented and
end tested independently

Accessing your functions

For now™, put your related functions and scripts

in the same directory.
‘ MyDi rec’rory\

dotsInRings.m polar2xy.m

randDouble.m drawColorDot.m

Any script/function that
calls polar2xy.m

*The path function gives greater flexibility

Subfunctions, aka “local functions”

= There can be more than one function in an m-file
= top function is the main function and has the name of the file

= remaining functions are subfunctions, accessible only by the functions in the
same m-file

= Each (sub)function in the file begins with a function header

s Keyword end is not necessary at the end of a (sub)function, but if you use it,
use it consistently

Reasons to use functions

m Clearer to read

= Reflects top-down design

= Separates concerns (“what” vs. “how”)

s Can divide work

Facilitates top-down design

|. Focus on how to draw the figure given just a
specification of what the function DrawStar

does.

2. Figure out how to implement DrawStar.

To specify a function...

... You describe how to use it, e.g,,

function DrawStar (xc,yc,r,c)
% Adds a 5-pointed star to the
% figure window. Star has radius r,
% center (xc,yc) and color c¢ where c
% 1s one of 'r', 'g', 'y', etc.

Given the specification, the user of the

function doesn't need to know the detail
of the function—they can just use it!

To implement a function...

... You write the code so that the function “lives up to” the

specification. E.g.,

r2 = r/(2*(1l+sin(pi/10))) ;

for k=1:11
theta =

if rem(k,

x(k) =
y (k)
else
x (k)
y (k)
end
end
£fill(x,y,c)

2)
xc
yc

XC
yYC

(2%k - 1)*pi/10;

+ r*cos (theta);
+ r*sin(theta) ;
+ r2*cos (theta) ;
+ r2*sin (theta) ;
he
pout ¢
i Worry @ here—
Dont atax SAOWR 5
neW sY abo \ \C sO

Reasons to use functions

m Code can be reused
m Easier to test

m Clearer to read
= Reflects top-down design
m Separates concerns (" 'what” vs. “how™)

s Can divide work

» More maintainable

Software Management

4 N
Today: | write a function ePerimeter (a,b)

that computes the perimeter of the ellipse (XT +(;’j2 _1

N

During this year: You write software that makes A
extensive use of ePerimeter (a,b). Imagine
hundreds of programs that call (use) ePerimeter

N /

Next year: | discover a better way to approximate eIIipse\
perimeters. | change the implementation of
ePerimeter (a,b). You do not have to change your

\ programs that call function ePerimeter at all.)

Script vs. Function

= A function has its own private
(local) function workspace
that does not interact with
the workspace of other
functions or the Command
Window Workspace

= Variablesare not shared
between workspaces even if
they have the same name

Did you watch MatTV?

Episode XV:
Executing a
Function

iClicker +

Trace 1: Whatis displayed?

x= 1; function y = £ (x)

x= f(é:f:y); v=x + 1;

y:—x-l-]_; X=X + 2;

