
◼ Previous lecture
◼ User-defined functions

◼ Differences vs. scripts
◼ When and how to write

◼ Today’s lecture
◼ User-defined functions

◼ Declaration and invocation
◼ Subfunctions
◼ Function scope—did you watch MatTV epsiode “Executing a

Function”?
◼ Why functions?

◼ Announcements
◼ Discussion this week in classroom (Hollister 401)
◼ Prelim 1 Tues 3/10 at 7:30pm. Tell us now if you have an exam

conflict. Email Amy Elser <ahf42@cornell.edu> with your conflict
info (course no., instructor email, conflict time, etc.)

c= input('How many concentric rings? ');
d= input('How many dots? ');

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots
for count= 1:d

% Generate random dot location (polar coord.)
theta= _______
r= _______

% Convert from polar to Cartesian
x= _______
y= _______

% Use plot to draw dot
end

end

[x,y] = polar2xy(r,theta);

Review

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

polar2xy.m

Two perspectives: User vs. Provider

User wants to write:

% Generate random polar position

dist= r0 + (r1 – r0)*rand();

angle= 360*rand();

% Convert position to Cartesian

[xDart, yDart]= ...
polar2xy(dist, angle);

% Mark position with red circle

plot(xDart, yDart, 'ro')

Provider must write:

function [x,y] = polar2xy(r,th)

% Convert polar coordinates to
Cartesian

% r is radius, th is angle in
degrees.

rads= th*pi/180;

x= r*cos(rads);

y= r*sin(rads);

function [x, y] = polar2xy(r, theta)

Output

parameter list

enclosed in []

Function name

(This file’s name is
polar2xy.m)

Input parameter

list enclosed in

()

...

[ret1, ret2]= polar2xy(arg1, arg2);

...

Call example (invocation): [user]

Header example (declaration): [provider]

General form of a user-defined function [provider]

function [out1, out2, …] = functionName (in1, in2, …)

% 1-line comment to describe the function

% Additional description of function and parameters

Executable code that at some point assigns

values to output parameters out1, out2, …

◼ in1, in2, … are defined when the function begins execution.
Variables in1, in2, … are called function parameters and they hold
the function arguments used when the function is invoked (called).

◼ out1, out2, … are not defined until the executable code in the
function assigns values to them.

Comments in functions

◼ Block of comments after the function header is
printed whenever a user types

help <functionName>

at the Command Window

◼ 1st line of this comment block is searched whenever a
user types

lookfor <someWord>

at the Command Window

◼ Every function should have a comment block after the
function header that says concisely what the function
does and what the parameters mean

Returning a value ≠ printing a value

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to

% Cartesian coordinates (x,y). Theta in degrees.

x= …; y= …;

% Convert polar (r1,t1) to Cartesian (x1,y1)

r1= 1; t1= 30;

[x1, y1]= polar2xy(r1, t1);

plot(x1, y1, 'b*')

…

You have this function: [provider]

Code to call the above function: [user]

Returning a value ≠ printing a value

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to

% Cartesian coordinates (x,y). Theta in degrees.

fprintf('x= %f; y= %f\n', …, …)

% Convert polar (r1,t1) to Cartesian (x1,y1)

r1= 1; t1= 30;

[x1, y1]= polar2xy(r1, t1);

plot(x1, y1, 'b*')

…

You have this function: [provider]

Code to call the above function: [user]

% Given f and n

d= convertLength(f, n);

d= convertLength(f*12 + n);

d= convertLength(f + n/12);

x= min(convertLength(f, n), 1);

y= convertLength(pi*(f + n/12)^2);

A: 1 B: 2 C: 3 D: 4

function m = convertLength(ft, in)

% Convert length from feet (ft) and inches (in)

% to meters (m).

. . .

Given this function header:

How many proper calls to convertLength() are shown below?

E: 5 or 0

Functions step-by-step

1. Identify candidates

◼ Look for opportunities to reuse logic or improve clarity

2. Design interface

◼ Name, inputs, outputs, side effects

3. Implement function

◼ “Write code”

4. Test

◼ Try it out (and try to break it)

5. Use

Reasons to use functions

◼ Code can be reused

◼ Easier to test

◼ Clearer to read

◼ Reflects top-down design

◼ Separates concerns (“what” vs. “how”)

◼ Can divide work

◼ More maintainable

[user] [provider]

c= input('How many concentric rings? ');

d= input('How many dots per ring? ');

% Put dots btwn circles with radii rRing and (rRing-1)

for rRing = 1:c

% Draw d dots

for count = 1:d

% Generate random dot location (polar coord.)

% Convert coord from polar to Cartesian

% Use plot to draw dot

end

end

Each task becomes a
function that can be
implemented and
tested independently

Demo

Accessing your functions

For now*, put your related functions and scripts

in the same directory.

dotsInRings.m

randDouble.m

polar2xy.m

drawColorDot.m

*The path function gives greater flexibility

MyDirectory

Any script/function that
calls polar2xy.m

Subfunctions, aka “local functions”

◼ There can be more than one function in an m-file

◼ top function is the main function and has the name of the file

◼ remaining functions are subfunctions, accessible only by the functions in the
same m-file

◼ Each (sub)function in the file begins with a function header

◼ Keyword end is not necessary at the end of a (sub)function, but if you use it,

use it consistently

Reasons to use functions

◼ Code can be reused

◼ Easier to test

◼ Clearer to read

◼ Reflects top-down design

◼ Separates concerns (“what” vs. “how”)

◼ Can divide work

◼ More maintainable

Facilitates top-down design

1. Focus on how to draw the figure given just a
specification of what the function DrawStar

does.

2. Figure out how to implement DrawStar.

To specify a function…

… you describe how to use it, e.g.,

function DrawStar(xc,yc,r,c)

% Adds a 5-pointed star to the

% figure window. Star has radius r,

% center(xc,yc) and color c where c

% is one of 'r', 'g', 'y', etc.

Given the specification, the user of the
function doesn’t need to know the detail
of the function—they can just use it!

To implement a function…

… you write the code so that the function “lives up to” the
specification. E.g.,

r2 = r/(2*(1+sin(pi/10)));

for k=1:11

theta = (2*k - 1)*pi/10;

if rem(k,2) == 1

x(k) = xc + r*cos(theta);

y(k) = yc + r*sin(theta);

else

x(k) = xc + r2*cos(theta);

y(k) = yc + r2*sin(theta);

end

end

fill(x,y,c)

Reasons to use functions

◼ Code can be reused

◼ Easier to test

◼ Clearer to read

◼ Reflects top-down design

◼ Separates concerns (“what” vs. “how”)

◼ Can divide work

◼ More maintainable

Software Management

Today: I write a function ePerimeter(a,b)

that computes the perimeter of the ellipse

During this year: You write software that makes

extensive use of ePerimeter(a,b). Imagine

hundreds of programs that call (use) ePerimeter

Next year: I discover a better way to approximate ellipse

perimeters. I change the implementation of

ePerimeter(a,b). You do not have to change your

programs that call function ePerimeter at all.

1

22

=







+









b

y

a

x

Script vs. Function

◼ A script is executed line-by-

line just as if you are typing it

into the Command Window

◼ The value of a variable in a

script is stored in the Command

Window Workspace

◼ A function has its own private

(local) function workspace

that does not interact with

the workspace of other

functions or the Command

Window Workspace

◼ Variables are not shared

between workspaces even if

they have the same name

Did you watch MatTV?

Episode XV:

Executing a
Function

x= 1;

x= f(x + 1);

y= x + 1;

disp(y)

function y = f(x)

y= x + 1;

x= x + 2;

Trace 1: What is displayed?

A: 1 B: 2 C: 3 D: 4 E: 5

Function f memory spaceScript’s memory space

