m Previous Lecture:

= Nested loops
= Developing algorithms and code

= Today, Lecture 8:

= Review nested loops
= User-defined functions, part |

m Announcement:

= Project 2 due Monday 2/17 at | Ipm
= Watch MatTV episode “Executing a Function”

= Lunch with instructors! RSVP via website survey. Friday,
Feb 14, Risley Hall, 11:50




Rational approximation of 7(

s T =3.141592653589793...
= Can be closely approximated by fractions,
e.g., T~ 22/7
= Rational number: a quotient of two integers
m Approximate 1 as p/q where p and q are positive integers <M

= Start with a straight forward solution:
= Get M from user
= Calculate quotient p/q for all combinations of p and q

s Pick best quotient = smallest error



% Rational approximation of pi

M = input('Enter M: ') ;

% Check all possible denominators



% Rational approximation of pi

M = input('Enter M: ') ;

% Check all possible denominators
for g = 1:M

end



% Rational approximation of pi

M = input('Enter M: ') ;

% Check all possible denominators
for g = 1:M

For current q find best numerator p...
Check all possible numerators

end



% Rational approximation of pi

M = input('Enter M: ') ;

% Check all possible denominators

for g = 1:M
% At this q, check all possible numerators
for p=1:M

end
end



Pattern: Best in set

Algorithm: Finding the best in a set

Init bestSoFar (value & quality)
Loop over set
if current is better than bestSoFar
bestSoFar € current
end
end
bestSoFar is best overall




% Rational approximation of pi

M = input('Enter M: ') ;

% Best gq, p, and error so far
gBest=1; pBest=1;

err pq = abs(pBest/gqBest - pi);

% Check all possible denominators
for g = 1:M

% At this q, check all possible numerators

for p=1:M

end
end

myPi = pBest/gBest;



% Rational approximation of pi

M = input('Enter M: ') ;

% Best gq, p, and error so far
gBest=1; pBest=1;

err pq = abs(pBest/gBest - pi);

% Check all possible denominators
for g = 1:M
% At this q, check all possible numerators
for p=1:M
if abs(p/q - pi) < err pq % best p/q found
err pq = abs(p/q - pi);
pBest= p;
gBest= q;
end
end
end

myPi = pBest/gBest;

piFrac.m




% Complicated ver

M = input('Enter M: ') ;
% Best gq, p, and error so far

sion in the book

gBest=1; pBest=1
err pq = abs (pBes

% Check all possible denominatagrs

for g = 1:M

o
4

t/gBest - pi);

Algorithm: Finding the best in a set

Init bestSoFar
Loop over set
if current is better than bestSoFar
bestSoFar < current
end
end

% At this q, check all possible numerators

p0=1; eO=abs(p0/q - pi);

for p =1:M
if abs(p/g
pO=p; eO0
end
end

% best p & error so far

- pi) < e0 % new best numerator found

= abs(p/q - pi);

% Is best quotient for this g the best overall?

if e0 < err pqg
pBest=p0;
end
end

gqBest=q; err pg=e0;

myPi = pBest/gBes

t;




Analyzing cost

= See Eg3 | and FasterEg3 | in the book

for a = 1:n
disp('alpha')
for b = 1:m

disp('beta')
end

end

nestedLoops.m

How many times are “alpha”
and “beta” displayed!?




The savvy programmer...

Learns useful programming patterns and use them
where appropriate

Seeks inspiration by working through test data “by
hand”

s Asks, “What am | doing?” at each step

= Sets up a variable for each piece of information maintained
when working the problem by hand

Decomposes the problem into manageable subtasks

= Refines the solution iteratively, solving simpler subproblems
first

Remembers to check the problem’s boundary
conditions

Validates the solution (program) by trying it on test data



Stepping back... what do we know about scripts?

= Bundle complicated logic What if...

conveniently under one name = Inputs and outputs interacted with

= To find best rational approx. to , just other code?

run piFrac = Interaction with humans considered a

= Inputs and outputs interact with “side effect”

humans = Behavior not affected by other

= input(), fprintf() computations?
= Share variables in common

workspace

= Danger: inheriting bad initialization
from previous computation



Built-in functions

= We've used many Matlab built-in functions, e.g,,
rand(),abs (), floor (), rem()

s Example: abs (x-0.5)

m Observations:
= abs () is set up to be able to work with any valid data

= abs () doesn’t prompt us for input; it expects that we
brovide data that it’ll then work on

= abs () returns a value that we can use in our program
yDistance= abs(y2-yl) ;

while abs(myPi-pi) > .0001



User-defined functions

We can write our own functions to perform a specific task:

= Example: draw a disk with specified radius, color, and center coordinates
= Inputs: center, radius, color
= Outputs: none
= Side effects: Shows disk to user

s Example: generate a random floating point number in a specified interval
= Inputs: interval lower bound, interval upper bound
= Outputs: random number

s Example: convert polar coordinates to x-y (Cartesian) coordinates

= Inputs: r-coordinate, 6-coordinate
= Outputs: x-coordinate, y-coordinate



Functions step-by-step

2.

3.

4.

|dentify candidates

Look for opportunities to reuse logic or improve clarity

Design interface

Name, inputs, outputs, side effects

Implement function
“Write code”

Test

Try it out (and try to break it)
Use



Draw a bulls eye figure with randomly placed dots

m Dots are randomly placed
within concentric rings

» User decides how many
rings, how many dots per
ring




Draw a bulls eye figure with randomly placed dots

= What are the main tasks?

s Accommodate variable number
of rings—Iloop

m For each ring

= Need many dots (another loop)

= For each dot
= Generate random position
s Choose color

s Draw it



Convert from polar to Cartesian coordinates

Polar coordinates Cartesian coordinates



c= input ('How many concentric rings? ') ;
d= input('How many dots? ');

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1l:c

% Draw d dots

for count= 1:d

% Generate random dot location (polar coord.)

theta=
r=
% Convert from polar to Cartesian Outline
;z A common task! Create aForl each ring
function polar2xy to do ° |For each dot
% Use plot to draw dot |this. polar2xy likely will » Generate random
end be useful in other problems |  position
end as well. » Choose color

 Draw dot



% Generate random dot location (polar) A/of'eﬁuy“

theta= % degrees .

r= ) (o) 6 /
% Convert from polar to Cartesian ﬁzigjwﬂ
rads= theta*pi/180; % radian part©

x= r*cos(rads) ;
y= r*sin(rads) ;



function [x, y] = polar2xy(r,theta)

% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,vy).

% theta is in degrees.

on fi
\f\C’(.\O
rads= theta*pi/180; % radian AgiaxzxYxm
x= r*cos(rads) ; P

y= r*sin(rads);



function [x, y] = polar2xy(r,theta)

% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,Vy).

theta is in degrees.

o°

rads= theta*pi/180; % radian x“afz"y 10
X= r*cos (rads) ; PO
y= r*sin (rads) ;
Think of polar2xy as a factory
"Factory”

Caller provides —
input to the
“factory”

— - produces
. output for
caller to use

ﬁ




function [x, y] = polar2xykr,thetaﬂ
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,Vy).

% theta i1s in degrees.

rads= theta*pi/180; % radian con ’{'\\i\
x= r*cos (rads) ; A 1a$2$y'
y= r*sin(rads) ; PO

r= input(‘Enter radius: ') ;
theta= input(‘Enter angle in degrees: ');

rads= theta*pi/180; % radian Paﬁﬁﬁya
x= r*cos (rads) ; (S cript fie

y= r*sin(rads) ;



Functions step-by-step

2.

3.

4.

|dentify candidates

Look for opportunities to reuse logic or improve clarity

Design interface

Name, inputs, outputs, side effects

Implement function
“Write code”

Test

Try it out (and try to break it)
Use



Time for testing

s Good test cases:
=P =0
= theta = 0, pi/2, pi, 3*pi/2
= theta = -pi, 3*pi
= How to test
= [X, y]= polar2xy(r, theta)
= Command window
= Test script
= DON'T try to “run” the function file




c= input ('How many concentric rings? ') ;
d= input('How many dots? ');

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1l:c

% Draw d dots

for count= 1:d

% Generate random dot location (polar coord.)
theta=
r=

% Convert from polar to Cartesian

o A common task! Create a
function polar2xy to do
% Use plot to draw dot this. polar2xy likely will
end be useful in other problems
end as well.




c= input ('How many concentric rings? ') ;
d= input('How many dots? ')

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1l:c

% Draw d dots

for count= 1:d

% Generate random dot location (polar coord.)
theta=
r=

% Convert from polar to Cartesian

[x,y] = polar2xy(r, theta);

% Use plot to draw dot
end
end



function [x, y] = polar2xy(r,theta)
A

Input parameter

Function name list enclosed In

(This file’s name is ()
polar2xy.m)

Output
parameter list
enclosed in [ |



Function header is the “contract” for how the function will be used (called)

You have this function:
function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r, theta) to
% Cartesian coordinates (X,y). Theta in degrees.

Code to call the above function:




Function header is the “contract” for how the function will be used (called)

You have this function:
function [x, y] = polar2xy(r, theta)

Code to fplf fhe abov@lfurtigh:
% C on ert polar rl, )5 Cartesian (xl,yl)
rl: | tl=30;

plot(xl, yl,‘b™)



