
◼ Previous Lecture:

◼ (Definite) iteration using for

◼ Today’s Lecture:

◼ Review loop & conditionals using graphics (I)

◼ (Indefinite) iteration using while

◼ Announcements:

◼ Please fill out “Week 3 Survey” in CMS

◼ Be sure to read Insight §3.2 before discussion section next week

◼ 1-on-1 tutoring is available via CMS

◼ Office and consulting hours also available to help you – let us clarify anything that doesn’t

make sense

◼ Project 2 (part A) will be posted before the weekend

◼ (if you already know another language) We do not use break in this course

Monte Carlo π with N darts on L-by-L board

◼ Be output-oriented
◼ Want a square full of random darts

◼ Want to treat darts in a circle specially

◼ Outline steps to produce desired
output (which should be repeated?)
◼ “Throw” dart to random

location
◼ Determine whether dart is in

circle
◼ Make implementation decisions (after

writing down outline)
◼ Coordinate system? Origin?

◼ Circle test?

◼ Compare output with expectations

Accumulation

Definite iteration

N=__; L=__; hits= 0;

for k = 1:N

% Throw kth dart

x= rand()*L – L/2;

y= rand()*L – L/2;

% Count it if it is in the circle

if sqrt(x^2 + y^2) <= L/2

hits= hits + 1;

end

end

myPi= 4*hits/N;

(0,0)

Monte Carlo π with N darts on L-by-L board

Visualize output (check your own work!)

If dart is inside circle

Draw red dot

Otherwise

Draw blue dot

Graphics details

◼ hold on, hold off

◼ Add to existing plot, or replace?

◼ axis equal, axis off, axis()

◼ For graphics, want square aspect ratio, no distracting tic marks

◼ Manual control of range

◼ sprintf()

◼ Insert numbers into text variables

What will be displayed when you run the following script?

for k = 4:5

disp(k)

k= 9;

disp(k)

end

4

9

C

4

9

5

9

A

error

D

4

4

5

5

B

Watch MatTV to learn more!

Episode IX:

Troubleshooting
Loops

Approximating π

◼ Why?

◼ Today’s convenience made possible

because of computers

◼ Methods

◼ Monte Carlo

◼ Series summation (exercise 3)

◼ Polygons (Ch. 2)

◼ Fractions (Ch. 3)

◼ Properties of approximations

◼ Speed of convergence

◼ Error bounds

Example: n-gon → circle

Inscribed hexagon
(n/2) sin(2π/n)

Circumscribed hexagon
n tan(π/n)

As n approaches infinity, the inscribed and circumscribed areas

approach the area of a circle.

When will |OuterA – InnerA| <= .000001?

Outline

◼ Input tolerance
◼ Compute areas of inscribed and circumscribed

triangles
◼ Compute difference in areas
◼ Repeat until difference is smaller than

tolerance:
◼ Compute areas of inscribed and circumscribed

polygons with one more side
◼ Compute difference in areas

◼ Output number of sides, average area, and
difference

Can we do this?

◼ Previously, made decisions while looping

◼ Can nest conditionals inside of loops

◼ But always looped a fixed number of times

◼ Now, need to make decisions that affect looping

◼ Need something new

tol= input('Enter the error tolerance:');

% The triangle case...

n= 3; % Number of Polygon Edges

A_n= (n/2)*sin(2*pi/n); % Inscribed Area

B_n= n*tan(pi/n); % Circumscribed Area

ErrorBound= B_n - A_n; % The error bound

% Repeat until error less than or equal to tolerance

???

n= n + 1;

A_n= (n/2)*sin(2*pi/n);

B_n= n*tan(pi/n);

ErrorBound= B_n - A_n;

end

% Display the final approximation

fprintf('With %d sides, avg A is %f, diff is %f\n',

n, (A_n+B_n)/2, ErrorBound);

“Until” vs. “As Long As”

Repeat until…

ErrorBound <= tol

Repeat as long as…

A ErrorBound <= tol
B ErrorBound < tol
C ErrorBound > tol
D ErrorBound >= tol

A

B

C

D

Stopping condition Keep-going condition

tol= input('Enter the error tolerance:');

% The triangle case...

n= 3; % Number of Polygon Edges

A_n= (n/2)*sin(2*pi/n); % Inscribed Area

B_n= n*tan(pi/n); % Circumscribed Area

ErrorBound= B_n - A_n; % The error bound

% Repeat until error less than or equal to tolerance

while ErrorBound > tol

n= n + 1;

A_n= (n/2)*sin(2*pi/n);

B_n= n*tan(pi/n);

ErrorBound= B_n - A_n;

end

% Display the final approximation

fprintf('With %d sides, avg A is %f, diff is %f\n',

n, (A_n+B_n)/2, ErrorBound);

Iteration caps

◼ Sometimes dangerous to let computers keep trying to compute

something indefinitely

◼ “I need to make a decision now; give me your best guess (and how

confident you are)”

◼ Indefinite not the same as infinite, but infinite becomes a possibility

◼ Tip: Ctrl+C to interrupt stuck program

◼ Common to impose a maximum number of iterations

◼ How does our program change?

% Approximate pi (from Eg2_2.m)

tol= input('Enter the error tolerance:');

nMax= input('Enter the iteration bound:');

% The triangle case...

n= 3; % Number of Polygon Edges

A_n= (n/2)*sin(2*pi/n); % Inscribed Area

B_n= n*tan(pi/n); % Circumscribed Area

ErrorBound= B_n - A_n; % The error bound

% Iterate until error<=delta or until n reaches nMax

while

n= n + 1;

A_n= (n/2)*sin(2*pi/n);

B_n= n*tan(pi/n);

ErrorBound= B_n - A_n;

end

% Display the final approximation...

↑ To-do: Fill in the loop guard

(Boolean expression)

% Approximate pi (from Eg2_2.m)

tol= input('Enter the error tolerance:');

nMax= input('Enter the iteration bound:');

% The triangle case...

n= 3; % Number of Polygon Edges

A_n= (n/2)*sin(2*pi/n); % Inscribed Area

B_n= n*tan(pi/n); % Circumscribed Area

ErrorBound= B_n - A_n; % The error bound

% Iterate until error<=delta or until n reaches nMax

while (ErrorBound > tol && n < nMax)

n= n + 1;

A_n= (n/2)*sin(2*pi/n);

B_n= n*tan(pi/n);

ErrorBound= B_n - A_n;

end

% Display the final approximation...

↑ To-do: Fill in the loop guard

(Boolean expression)

Tips: complements and Boolean algebra

◼ Until A

◼ Until x < y

◼ Until A or B

◼ Until A and B

◼ while ~A % "not A"

◼ while ~(x < y)
while x >= y

◼ while ~(A || B)
while ~A && ~B

◼ while ~(A && B)
while ~A || ~B

Find smallest n such that outerA and innerA converge

First, itemize the tasks:

- define how close is close enough

- select an initial n

- calculate innerA, outerA for current n

- diff= outerA – innerA

- close enough?

- if not, increase n, repeat above tasks

Now organize the tasks → algorithm:

n gets initial value

innerA, outerA get initial values

Repeat until difference is small:

increase n

calculate innerA, outerA for current n

diff= outerA – innerA

Find smallest n such that outerA and innerA converge

Find smallest n such that outerA and innerA converge

n gets initial value

calculate innerA, outerA for current n

while <difference is not small enough>

increase n

calculate innerA, outerA for current n

diff= outerA – innerA

end

See Eg2_2.m

tol= input('Enter the error tolerance: ');

n = 3; % Number of Polygon Edges

A_n = (n/2)*sin(2*pi/n); % Inscribed Area

B_n = n*tan(pi/n); % Circumscribed Area

ErrorBound = B_n - A_n; % The error bound

while (ErrorBound > tol)

n = n+1; A_n = (n/2)*sin(2*pi/n); B_n = n*tan(pi/n);

ErrorBound = B_n - A_n;

end

% Display the final approximation

To-do: Modify the script to prompt the user until a delta at least 10^-12 is input

tol= input('Enter the error tolerance: ');

tolMin= 1e-12;

while tol < tolMin

tol= input(sprintf('Enter a tolerance >= %.0e: ',tolMin));

end

n = 3; % Number of Polygon Edges

A_n = (n/2)*sin(2*pi/n); % Inscribed Area

B_n = n*tan(pi/n); % Circumscribed Area

ErrorBound = B_n - A_n; % The error bound

while (ErrorBound > tol)

n = n+1; A_n = (n/2)*sin(2*pi/n); B_n = n*tan(pi/n);

ErrorBound = B_n - A_n;

end

% Display the final approximation

To-do: Modify the script to prompt the user until a delta at least 10^-12 is input

Important Features of Iteration

◼ A task can be accomplished if some steps are repeated; these steps

form the loop body

◼ Need a starting point

◼ Need to know when to stop

◼ Need to keep track of (and measure) progress

Common loop patterns

Do something n times

for k= 1:1:n

% Do something

end

Do something an indefinite number of
times

%Initialize loop variables

while (not stopping signal)

% Do something

% Update loop variables

end

Pattern to do something n times

for k= 1:1:n

% Do something

end

%Initialize loop variables

while (not stopping signal)

% Do something

% Update loop variables

end

Pattern to do something n times

for k= 1:1:n

% Do something

end

Do something an indefinite number of
times

%Initialize loop variables

k= 1;

while (k <= n)

% Do something

% Update loop variables

k= k+1;

end

