- Previous Lecture:
- (Definite) iteration using for
- Today's Lecture:
- Review loop \& conditionals using graphics (I)
- (Indefinite) iteration using while
- Announcements:
- Please fill out "Week 3 Survey" in CMS
- Be sure to read Insight §3.2 before discussion section next week
- I-on-I tutoring is available via CMS
- Office and consulting hours also available to help you - let us clarify anything that doesn't make sense
- Project 2 (part A) will be posted before the weekend
- (if you already know another language) We do not use break in this course

Monte Carlo π with N darts on L-by-L board

- Be output-oriented
- Want a square full of random darts
- Want to treat darts in a circle specially
- Outline steps to produce desired output (which should be repeated?)
- "Throw" dart to random location
- Determine whether dart is in circle
- Make implementation decisions (after writing down outline)
- Coordinate system? Origin?
- Circle test?
- Compare output with expectations

Monte Carlo \quad with N darts on L-by-L board

```
N=__; L=__; hits= 0;
    % Throw kth dart
    x= rand()*L - L/2;
    y= rand()*L - L/2;
    % Count it if it is in the circle
    if sqrt(x^2 + y^2) <= L/2
            hits= hits + 1;
    end
end
myPi= 4*hits/N;
```

Visualize output (check your own work!)

If dart is inside circle
 Draw red dot
 Otherwise

Draw blue dot

Graphics details

- hold on, hold off
- Add to existing plot, or replace?
- axis equal, axis off, axis()
- For graphics, want square aspect ratio, no distracting tic marks
- Manual control of range
- sprintf()
- Insert numbers into text variables

What will be displayed when you run the following script?
for $k=4: 5$

$\quad \operatorname{disp}(k)$
$k=9 ;$

disp (k)

4	4
9	4
5	5
9	5
A	B

Approximating π

- Why?
- Today's convenience made possible because of computers
- Methods
- Monte Carlo
- Series summation (exercise 3)
- Polygons (Ch. 2)
- Fractions (Ch. 3)
- Properties of approximations
- Speed of convergence
- Error bounds

$$
\begin{aligned}
& T_{n}=1+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}=\sum_{k=1}^{n} \frac{1}{k^{2}} \quad \approx \frac{\pi^{2}}{6} \\
& R_{n}=1-\frac{1}{3}+\cdots+\frac{(-1)^{n+1}}{2 n-1}=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{2 k-1} \approx \frac{\pi}{4}
\end{aligned}
$$

Example: n-gon \rightarrow circle

Inscribed hexagon Circumscribed hexagon $(n / 2) \sin (2 \pi / n)$
 $n \tan (\pi / n)$

As n approaches infinity, the inscribed and circumscribed areas approach the area of a circle.
When will |OuterA - InnerA| <= .00000I?

Outline

- Input tolerance
- Compute areas of inscribed and circumscribed triangles
- Compute difference in areas
- Repeat until difference is smaller than tolerance:
- Compute areas of inscribed and circumscribed polygons with one more side
- Compute difference in areas
- Output number of sides, average area, and difference

Can we do this?

- Previously, made decisions while looping
- Can nest conditionals inside of loops
- But always looped a fixed number of times
- Now, need to make decisions that affect looping
- Need something new

```
tol= input('Enter the error tolerance:');
```

```
% The triangle case...
n= 3; % Number of Polygon Edges
A_n=(n/2)*sin(2*pi/n); % Inscribed Area
B_n= n*tan(pi/n); % Circumscribed Area
ErrorBound= B_n - A_n; % The error bound
% Repeat until error less than or equal to tolerance
? ? ?
    n= n + 1;
    A_n= (n/2)*sin(2*pi/n);
    B_n= n*tan(pi/n);
    ErrorBound= B_n - A_n;
end
% Display the final approximation
fprintf('With %d sides, avg A is %f, diff is %f\n',
    n, (A_n+B_n)/2, ErrorBound);
```


"Until" vs. "As Long As"

Repeat until...

Repeat as long as...

ErrorBound <= tol

| A | ErrorBound $<=$ tol |
| :--- | :--- | :--- |
| $\square B$ | ErrorBound < tol |
| D | ErrorBound > tol |
| $D D$ | ErrorBound $>=$ tol |

Stopping condition
Keep-going condition

```
tol= input('Enter the error tolerance:');
```

```
% The triangle case...
n= 3; % Number of Polygon Edges
A_n=(n/2)*sin(2*pi/n); % Inscribed Area
B_n= n*tan(pi/n); % Circumscribed Area
ErrorBound= B_n - A_n; % The error bound
% Repeat until error less than or equal to tolerance
while ErrorBound > tol
    n= n + 1;
    A_n= (n/2)*sin(2*pi/n);
    B_n= n*tan(pi/n);
    ErrorBound= B_n - A_n;
end
% Display the final approximation
fprintf('With %d sides, avg A is %f, diff is %f\n',
    n, (A_n+B_n)/2, ErrorBound);
```


Iteration caps

- Sometimes dangerous to let computers keep trying to compute something indefinitely
- "I need to make a decision now; give me your best guess (and how confident you are)"
- Indefinite not the same as infinite, but infinite becomes a possibility
- Tip: Ctrl+C to interrupt stuck program
- Common to impose a maximum number of iterations
- How does our program change?
\% Approximate pi (from Eg2_2.m)
tol= input('Enter the error tolerance:');
nMax= input('Enter the iteration bound:');
\% The triangle case...
$\mathrm{n}=3$ 3; \quad \% Number of Polygon Edges
A_n=(n/2)*sin(2*pi/n); \% Inscribed Area
B_n= n*tan(pi/n); \% Circumscribed Area
ErrorBound= B_n - A_n; \% The error bound
\% Iterate until error<=delta or until n reaches nMax while
$\mathrm{n}=\mathrm{n}+1$; \uparrow To-do: Fill in the loop guard
A_n= (n/2)*sin(2*pi/n); (Boolean expression)
B_n= n*tan(pi/n);
ErrorBound= B_n - A_n;
end
\% Display the final approximation...

```
% Approximate pi (from Eg2_2.m)
tol= input('Enter the error tolerance:');
nMax= input('Enter the iteration bound:');
% The triangle case...
n= 3; % Number of Polygon Edges
A_n=(n/2)*sin(2*pi/n); % Inscribed Area
B_n= n*tan(pi/n); % Circumscribed Area
ErrorBound= B_n - A_n; % The error bound
% Iterate until error<=delta or until n reaches nMax
while (ErrorBound > tol && n < nMax)
    n= n + 1;
    A_n=(n/2)*sin(2*pi/n);
    B_n= n*tan(pi/n);
    ErrorBound= B_n - A_n;
end
% Display the final approximation...
```

Tips: complements and Boolean algebra

- Until A
- Until $x<y$
- Until A or B
- Until A and B

Homework exercise. convince yourselves that these are true

- while ~A \% "not A"
- while ~(x < y) while x >= y
- while $\sim(A|\mid B)$ while ~A \&\& ~B
- while ~(A \&\& B) while $\sim A$ || $\sim B$

Find smallest n such that outer A and inner A converge
First, itemize the tasks:

- define how close is close enough
- select an initial n
- calculate inner A, outer A for current n
- diff= outer A - innerA
- close enough?
- if not, increase n, repeat above tasks

Find smallest n such that outer A and inner A converge
Now organize the tasks \rightarrow algorithm:
n gets initial value inner A, outer A get initial values Repeat until difference is small:
increase n
calculate inner A, outer A for current n $\operatorname{diff}=$ outer $A-i n n e r A$

Find smallest n such that outer A and inner A converge
n gets initial value
calculate inner A, outer A for current n
while <difference is not small enough>
increase n
calculate inner A, outer A for current n $\operatorname{diff}=$ outer A - inner A
end

See Eg2_2.m

To-do: Modify the script to prompt the user until a delta at least $10^{\wedge}-12$ is input tol= input('Enter the error tolerance: ');

```
n = 3; % Number of Polygon Edges
A_n = (n/2)*sin(2*pi/n); % Inscribed Area
B_n = n*tan(pi/n); % Circumscribed Area
ErrorBound = B_n - A_n; % The error bound
while (ErrorBound > tol)
    n = n+1; A_n = (n/2)* sin(2*pi/n); B_n = n*tan(pi/n);
    ErrorBound = B_n - A_n;
end
% Display the final approximation
```

To-do: Modify the script to prompt the user until a delta at least $10^{\wedge}-12$ is input
tol= input('Enter the error tolerance: ');

```
tolMin= 1e-12;
while tol < tolMin
    tol= input(sprintf('Enter a tolerance >= %.0e: ',tolMin));
    end
```

 \(\mathrm{n}=3\); \(\quad\) \% Number of Polygon Edges
 A_n = (n/2)*sin(2*pi/n); \% Inscribed Area
 B_n \(=n^{*} \tan (\mathrm{pi} / \mathrm{n})\); \(\quad \%\) Circumscribed Area
 ErrorBound = B_n - A_n; \% The error bound
 while (ErrorBound > tol)
 \(\mathrm{n}=\mathrm{n}+1 ; \quad \mathrm{A} _\mathrm{n}=(\mathrm{n} / 2) * \sin \left(2^{*} \mathrm{pi} / \mathrm{n}\right) ; \quad\) B_n \(=\mathrm{n} * \tan (\mathrm{pi} / \mathrm{n})\);
 ErrorBound = B_n - A_n;
 end
\% Display the final approximation

Important Features of Iteration

- A task can be accomplished if some steps are repeated; these steps form the loop body
- Need a starting point
- Need to know when to stop
- Need to keep track of (and measure) progress

Common loop patterns

Do something n times

Do something an indefinite number of times
while (not stopping signal)
\% Do something
\% Update loop variables
end

Pattern to do something n times

Pattern to do something n times

