

- Previous Lecture:
- Nesting if-statements
- Logical operators, short-circuiting
- Top-down design
- Today's Lecture:
- Iteration using for
- (at home) Watch MatTV episode "Troubleshooting for-loops"
- Announcements:
- Discussion this week in the classrooms as listed in Student Center (Hollister 40I)
- Project I due tonight at IIpm; late submission accepted until tomorrow IIpm with 10\% penalty
- Read Insight §2.2 (or MatTV episode on while-loop) and Insight §3.2 before next lecture
- Partner-finding social tonight at 5 pm, Gates $3^{\text {rd }}$ floor lounge

Question

A I meter-long stick is split into two pieces. The breakpoint is randomly selected. On average, how long is the shorter piece?

Thought experiment? \rightarrow analysis
Physical experiment?
Computational experiment! \rightarrow simulation $\}$ Need to repeat many trials!

Question

A I meter-long stick is split into two pieces. The breakpoint is randomly selected (equally likely anywhere along the stick). On average, how long is the shorter piece?

A: $1 / 4 \mathrm{~m}$
B: $1 / 3 \mathrm{~m}$
C: $1 / 2 \mathrm{~m}$
D: other

Simulation:
use code to imitate the physical experiment

```
% one trial of the experiment
breakPt= rand();
if breakPt < 0.5
    shortPiece= breakPt;
else
    shortPiece= 1 - breakPt;
end
```

More shortcuts: min()
\% one trial of the experiment breakPt= rand();
shortPiece= min(breakPt, 1-breakPt);

Want to do many trials, add up the lengths of the short pieces, and then divide by the number of trials to get the average length.

Algorithm (bottom-up development)
Repeat many times:

```
% one trial of the experiment
breakPt= rand();
shortPiece= min(breakPt, 1-breakPt);
```

Take average
Print result

avgLength= total/n; \% Take average fprintf('Average length is \%f\n', ... avgLength) \% Print result

See stickExp.m , showForLoop.m

Syntax of the for loop

for <var>= <start value>:<incr>:<end bound>
statements to be executed repeatedly
end

Loop header specifies all the values that the index variable will take on, one for each pass of the loop.
E.g, $k=3: 1: 7$ means k will take on the values $3,4,5,6$, 7, one at a time.

```
for k = 2:0.5:3 k takes on the values 2, 2.5,3
        disp(k)
end
for k = 1:4
        disp(k)
end
for k = 0:-2:-6
    disp(k)
end
for k = 0:-2:-7 k takes on the values 0, -2, -4, -6
    disp(k)
end
for k = 5:2:1
    disp(k)
end
    Non-integer increment is OK
k takes on the values I, 2, 3,4
Default increment is I
k takes on the values 0, -2, -4, -6
"Increment" may be negative
Colon expression specifies bounds
The set of values for k is the empty
set: the loop body won't execute
```

Pattern for doing something n times

```
n=
for k= 1:n
```

\% code to do
\% that something
end
Definite iteration

Accumulation Pattern

\% Average 10 numbers from user input
$\mathrm{n}=10$; \% number of data values
total $=0$; \% current sum (initialized to zero)
for $k=1: n$
\% read and process input value num= input('Enter a number: '); total= total + num;
end
avg= total/n; \% average of n numbers
fprintf('Average is \%f\n', avg)

Example: "Accumulate" a solution

\% Average 10 numbers from user input
clear \% clear workspace
$\mathrm{n}=10$; \quad \% number of data values
for $k=1: n$
\% read and process input value num= input('Enter a number: '); total= total + num;
end
ave= total/n; \% average of n numbers fprintf('Average is \%f\n', ave)

How many passes through the loop will be completed?

A: 0
B: 1
C: 9
D: 10
E: 11

Remember to initialize

```
% Average 10 numbers from user input
n= 10; % number of data values
total= 0; % current sum (initialized to zero)
for k = 1:n
    % read and process input value
        num= input('Enter a number: ');
        total= total + num;
end
ave= total/n; % average of n numbers
fprintf('Average is %f\n', ave)
```


Monte Carlo methods

1. Derive a relationship between some desired quantity and a probability
2. Use simulation to estimate the probability

- Computer-generated random numbers

3. Approximate desired quantity based on prob. estimate

Monte Carlo Approximation of π

Throw N darts
Sq. area $=\boldsymbol{L} \times \boldsymbol{L}$
Circle area $=\pi \boldsymbol{L}^{\mathbf{2}} / \mathbf{4}$
Prob. landing in circle

$$
\begin{aligned}
& =(\text { circle area }) /(\text { sq. area }) \\
& =\pi / \mathbf{4} \\
& \cong \boldsymbol{\boldsymbol { N } _ { i n }} \boldsymbol{/} \boldsymbol{N}
\end{aligned}
$$

Monte Carlo Approximation of π

Throw N darts

$$
\pi \cong 4 N_{i n} / N
$$

Monte Carlo Approximation of π

For each of N trials
Throw a dart
If it lands in circle add 1 to total \# of hits

Pi is 4*hits/N

Monte Carlo π with N darts on L-by-L board

```
N=__;
for k = 1:N
```

end
myPi= 4*hits/n;

Monte Carlo π with N darts on L-by-L board
$\mathrm{N}=\ldots$; $\mathrm{L}=$ __; hits= 0 ; for $k=1: N$
\% Throw kth dart
$\mathrm{x}=\mathrm{rand}()_{\mathrm{L}} \mathrm{L} \mathrm{L} / 2$;
$\mathrm{y}=\operatorname{rand}\left(\mathrm{l} \mathrm{*}_{\mathrm{L}}-\mathrm{L} / 2\right.$;
\% Count it if it is in the circle
if sqrt($x^{\wedge} 2+y^{\wedge} 2$) $<=\mathrm{L} / 2$
hits= hits + 1;
end
end
myPi= 4*hits/N;

