

 Previous Lecture:

 Nesting if-statements

 Logical operators, short-circuiting

 Top-down design

 Today’s Lecture:

 Iteration using for

 (at home) Watch MatTV episode “Troubleshooting for-loops”

 Announcements:
 Discussion this week in the classrooms as listed in Student Center (Hollister 401)

 Project 1 due tonight at 11pm; late submission accepted until tomorrow 11pm

with 10% penalty

 Read Insight §2.2 (or MatTV episode on while-loop) and Insight §3.2 before next

lecture

 Partner-finding social tonight at 5pm, Gates 3rd floor lounge

Question

A 1 meter-long stick is split into two pieces. The breakpoint is

randomly selected. On average, how long is the shorter piece?

Thought experiment?  analysis

Physical experiment?

Computational experiment!  simulation

Question

A 1 meter-long stick is split into two pieces. The

breakpoint is randomly selected (equally likely

anywhere along the stick). On average, how long is

the shorter piece?

A: ¼ m

B: 1/3 m

C: ½ m

D: other

% one trial of the experiment

breakPt= rand();

if breakPt < 0.5

shortPiece= breakPt;

else

shortPiece= 1 - breakPt;

end

Simulation:

use code to imitate the physical experiment

% one trial of the experiment

breakPt= rand();

shortPiece= min(breakPt, 1-breakPt);

Want to do many trials, add up the lengths of the
short pieces, and then divide by the number of trials

to get the average length.

More shortcuts: min()

% one trial of the experiment

breakPt= rand();

shortPiece= min(breakPt, 1-breakPt);

Repeat many times:

Take average

Print result

Algorithm (bottom-up development)

n= 10000; % number of trials

total= 0; % accumulated length so far

for k = 1:1:n % Repeat many times

% one trial of the experiment

breakPt= rand();

shortPiece= min(breakPt, 1-breakPt);

total= total + shortPiece;

end

avgLength= total/n; % Take average

fprintf('Average length is %f\n', ...

avgLength) % Print result

See stickExp.m , showForLoop.m

Syntax of the for loop

for <var>= <start value>:<incr>:<end bound>

statements to be executed repeatedly

end

Loop header specifies all the values that the index variable

will take on, one for each pass of the loop.

E.g, k= 3:1:7 means k will take on the values 3, 4, 5, 6,

7, one at a time.

Loop body

for loop examples

for k = 2:0.5:3 k takes on the values 2, 2.5, 3

disp(k) Non-integer increment is OK

end

for k = 1:4 k takes on the values 1, 2, 3, 4

disp(k) Default increment is 1

end

for k = 0:-2:-6 k takes on the values 0, -2, -4, -6

disp(k) “Increment” may be negative

end

for k = 0:-2:-7 k takes on the values 0, -2, -4, -6

disp(k) Colon expression specifies bounds

end

for k = 5:2:1 The set of values for k is the empty

disp(k) set: the loop body won’t execute

end

Pattern for doing something n times

n= _____

for k= 1:n

% code to do

% that something

end

Accumulation Pattern

% Average 10 numbers from user input

n= 10; % number of data values

total= 0; % current sum (initialized to zero)

for k = 1:n

% read and process input value

num= input('Enter a number: ');

total= total + num;

end

avg= total/n; % average of n numbers

fprintf('Average is %f\n', avg)

Example: “Accumulate” a solution

% Average 10 numbers from user input

clear % clear workspace

n= 10; % number of data values

for k = 1:n

% read and process input value

num= input('Enter a number: ');

total= total + num;

end

ave= total/n; % average of n numbers

fprintf('Average is %f\n', ave)

How many passes
through the loop will
be completed?

A: 0

B: 1

C: 9

D: 10

E: 11

% Average 10 numbers from user input

n= 10; % number of data values

total= 0; % current sum (initialized to zero)

for k = 1:n

% read and process input value

num= input('Enter a number: ');

total= total + num;

end

ave= total/n; % average of n numbers

fprintf('Average is %f\n', ave)

Remember to initialize

Monte Carlo methods

1. Derive a relationship between

some desired quantity and a

probability

2. Use simulation to estimate the

probability

 Computer-generated random

numbers

3. Approximate desired quantity

based on prob. estimate

Monte Carlo Approximation of 

Throw N darts

L
L/2

Sq. area = L  L

Circle area = L2/4

Prob. landing in circle
= (circle area)/(sq. area)
= /4
 Nin/N

Monte Carlo Approximation of 

L
L/2

Throw N darts

  4 Nin / N

Monte Carlo Approximation of 

For each of N trials

Throw a dart

If it lands in circle

add 1 to total # of hits

Pi is 4*hits/N

Monte Carlo  with N darts on L-by-L board

N=__;

for k = 1:N

end

myPi= 4*hits/N;

Monte Carlo  with N darts on L-by-L board

N=__; L=__; hits= 0;

for k = 1:N

% Throw kth dart

x= rand()*L – L/2;

y= rand()*L – L/2;

% Count it if it is in the circle

if sqrt(x^2 + y^2) <= L/2

hits= hits + 1;

end

end

myPi= 4*hits/N;

(0,0)

