CIS Partner Finding Social

Tuesday, February 4
Gates 310 and 3rd Floor Lounge

5-6 pm for 1000-2000 level classes
6-7 pm for 3000+ level classes
Previous Lecture:
- Nesting if-statements
- Logical operators, short-circuiting
- Top-down design

Today’s Lecture:
- Iteration using for
- (at home) Watch MatTV episode “Troubleshooting for-loops”

Announcements:
- Discussion this week in the classrooms as listed in Student Center (Hollister 401)
- Project 1 due tonight at 11pm; late submission accepted until tomorrow 11pm with 10% penalty
- Read Insight §2.2 (or MatTV episode on while-loop) and Insight §3.2 before next lecture
- Partner-finding social tonight at 5pm, Gates 3rd floor lounge
A 1 meter-long stick is split into two pieces. The breakpoint is randomly selected. On average, how long is the shorter piece?

Thought experiment? → analysis
Physical experiment?
Computational experiment! → simulation

Need to repeat many trials!
A 1 meter-long stick is split into two pieces. The breakpoint is randomly selected (equally likely anywhere along the stick). On average, how long is the shorter piece?

A: $\frac{1}{4}$ m

B: $\frac{1}{3}$ m

C: $\frac{1}{2}$ m

D: other
Simulation:
use code to imitate the physical experiment

% one trial of the experiment
breakPt = rand();
if breakPt < 0.5
 shortPiece = breakPt;
else
 shortPiece = 1 - breakPt;
end
More shortcuts: \texttt{min()}

\begin{verbatim}
\% one trial of the experiment
breakPt = rand();
shortPiece = min(breakPt, 1-breakPt);
\end{verbatim}

Want to do many trials, add up the lengths of the short pieces, and then divide by the number of trials to get the average length.
Algorithm (bottom-up development)

Repeat many times:

\begin{verbatim}
% one trial of the experiment
breakPt = rand();
shortPiece = min(breakPt, 1-breakPt);
\end{verbatim}

Take average

Print result
n = 10000; % number of trials
total = 0; % accumulated length so far

for k = 1:1:n % Repeat many times
 % one trial of the experiment
 breakPt = rand();
 shortPiece = min(breakPt, 1 - breakPt);
 total = total + shortPiece;
end

avgLength = total/n; % Take average
fprintf('Average length is %f
', ...
 avgLength) % Print result

See stickExp.m, showForLoop.m
Syntax of the **for** loop

```
for <var>= <start value>::<incr>::<end bound>

statements to be executed repeatedly

end
```

Loop header specifies all the values that the index variable will take on, one for each pass of the loop.

E.g, \(k = 3:1:7 \) means \(k \) will take on the values 3, 4, 5, 6, 7, one at a time.
for loop examples

```matlab
for k = 2:0.5:3
    disp(k)
end
k takes on the values 2, 2.5, 3
Non-integer increment is OK

for k = 1:4
    disp(k)
end
k takes on the values 1, 2, 3, 4
Default increment is 1

for k = 0:-2:-6
    disp(k)
end
k takes on the values 0, -2, -4, -6
“Increment” may be negative

for k = 0:-2:-7
    disp(k)
end
k takes on the values 0, -2, -4, -6
Colon expression specifies bounds

for k = 5:2:1
    disp(k)
end
The set of values for k is the empty set: the loop body won’t execute
```
Pattern for doing something \(n \) times

\[
n = ____\clidef{1}{n}
\]

\[
\text{for } k = 1 : n
\]

\[
\% \text{ code to do}
\]

\[
\% \text{ that something}
\]

end
% Average 10 numbers from user input

n = 10; % number of data values
total = 0; % current sum (initialized to zero)

for k = 1:n
 % read and process input value
 num = input('Enter a number: ');
 total = total + num;
end

avg = total/n; % average of n numbers

fprintf('Average is %f
', avg)
Example: “Accumulate” a solution

% Average 10 numbers from user input
clear % clear workspace
n= 10; % number of data values

for k = 1:n
 % read and process input value
 num = input('Enter a number: ');
 total = total + num;
end
ave = total/n; % average of n numbers
fprintf('Average is %f
', ave)

How many passes through the loop will be completed?

A: 0
B: 1
C: 9
D: 10
E: 11
% Average 10 numbers from user input

n = 10; % number of data values
total = 0; % current sum (initialized to zero)
for k = 1:n
 % read and process input value
 num = input('Enter a number: ');
 total = total + num;
end
ave = total/n; % average of n numbers
fprintf('Average is %f\n', ave)
Monte Carlo methods

1. Derive a relationship between some *desired quantity* and a *probability*
2. Use simulation to estimate the probability
 - Computer-generated random numbers
3. Approximate desired quantity based on prob. estimate
Monte Carlo Approximation of π

Throw N darts

Sq. area = $L \times L$

Circle area = $\pi L^2 / 4$

Prob. landing in circle

= (circle area)/(sq. area)

= $\pi / 4$

$\approx N_{in} / N$
Monte Carlo Approximation of π

Throw N darts

$$\pi \approx 4 \frac{N_{in}}{N}$$
Monte Carlo Approximation of π

For each of N trials
 Throw a dart
 If it lands in circle
 add 1 to total # of hits

π is $4 \times \text{hits} / N$
Monte Carlo \(\pi \) with \(N \) darts on \(L \)-by-\(L \) board

\[\text{N=__;} \]
\[\text{for k = 1:N} \]

\[\text{end} \]
\[\text{myPi= 4*hits/N;} \]
Monte Carlo π with N darts on L-by-L board

$N=__; \quad L=__; \quad \text{hits}= 0;$

\begin{verbatim}
for k = 1:N
 \% Throw kth dart
 x= rand() * L - L/2;
 y= rand() * L - L/2;
 \% Count it if it is in the circle
 if sqrt(x^2 + y^2) <= L/2
 hits= hits + 1;
 end
end
myPi= 4*hits/N;
\end{verbatim}