Previous Lecture (and Discussion):
- Branching (if, elseif, else, end)
- Relational operators (<, >, =, ==, ~, ..., etc.)

Today’s Lecture:
- Logical operators (&&, ||, ~) and “short-circuiting”
- More branching—nesting
- Top-down design

Announcements:
- Project 1 (P1) due Tuesday 2/4 at 11pm
- On project due dates (e.g., 2/4), course staff will not check off exercises during office/consulting hours so that we can devote our effort to helping students with the project due. Thanks for your understanding.
- Register your clicker on Canvas – questions will count for credit next time
- Lunch with instructors! Fri, 11:50, sign up on website
Farewell, Spitzer
Spitzer Space Telescope (SIRTF)
2003–2020
Minimum is at $L, R, \text{ or } x_c$

$$q(x) = x^2 + bx + c$$

$$x_c = -\frac{b}{2}$$
Problem 3

Write a code fragment that prints “yes” if xc is in the interval and “no” if it is not.
So what is the requirement?

% Determine whether xc is in [L,R]
xc = -b/2;

if _________________
 disp('Yes')
else
 disp('No')
end
So what is the requirement?

```plaintext
% Determine whether xc is in [L,R]
xc = -b/2;

if L<=xc && xc<=R
    disp('Yes')
else
    disp('No')
end
```
The *if* construct

```
if  boolean expression1
    statements to execute if  expression1  is true
elseif  boolean expression2
    statements to execute if  expression1  is false
    but  expression2  is true
:
else
    statements to execute if all previous conditions are false
end
```

Can have any number of elseif branches but at most one else branch
The value of a **boolean expression** is either **true** or **false**.

\[(L \leq xc) \land (xc \leq R)\]

Above (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either **true** or **false**.

Connect boolean expressions by **boolean operators** **and** (**\&\&**), or (**\|\|**)

Also available is the **not** operator (**\~**)
Logical operators

&& logical and: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: $L \leq x_c$ && $x_c \leq R$
Logical operators

&& logical and: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: L<=xc && xc<=R

|| logical or: Is at least one condition true?
E.g., we can ask if x_c is outside of $[L,R]$,
i.e., “is $x_c < L$ or $R < x_c$?”
In code: xc<L || R<xc
Logical operators

&& logical and: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: $L \leq x_c \land x_c \leq R$

|| logical or: Is at least one condition true?
E.g., we can ask if x_c is outside of $[L, R]$, i.e., “is $x_c < L$ or $R < x_c$?”
In code: $x_c < L \lor R < x_c$

~ logical not: Negation
E.g., we can ask if x_c is not outside $[L, R]$.
In code: $\sim (x_c < L \lor R < x_c)$
“Truth table”

\[X, Y \text{ represent boolean expressions.} \]
\[\text{E.g., } \quad \text{d}>3.14 \]

| X | Y | X && Y \text{ “and”} | X || Y \text{ “or”} | \sim Y \text{ “not”} |
|---|---|----------------------|-------------------|---------------------|
| F | F | F | | |
| F | T | | | |
| T | F | | | |
| T | T | | | |
"Truth table"

\[X, Y \text{ represent boolean expressions.} \]
\[\text{E.g., } \quad d > 3.14 \]

| X | Y | X && Y | X || Y | ~Y |
|---|---|-------|-------|----|
| F | F | F | F | F |
| F | T | T | T | T |
| T | F | F | F | T |
| T | T | T | T | F |
“Truth table”

X, Y represent boolean expressions. E.g., \(d > 3.14 \)

| X | Y | X && Y “and” | X || Y “or” | \~Y “not” |
|---|---|--------------|------------|----------|
| F | F | F | | |
| F | T | F | | |
| T | F | T | | |
| T | T | T | | |
"Truth table"

\[X, Y \text{ represent boolean expressions.} \]

\[\text{E.g.,} \quad \text{d} > 3.14 \]

| X | Y | X && Y “and” | X || Y “or” | ~Y “not” |
|---|---|-------------|-------------|---------|
| F | F | F | | |
| F | T | | | |
| T | F | | | |
| T | T | | | |
How many entries in the table are True?

<table>
<thead>
<tr>
<th>A: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B: 5</td>
</tr>
<tr>
<td>C: 8</td>
</tr>
<tr>
<td>D: other</td>
</tr>
</tbody>
</table>
“Truth table”

X, Y represent boolean expressions.
E.g., $d > 3.14$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$X && Y$</th>
<th>$X | Y$</th>
<th>$\sim Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
“Truth table”

Matlab uses 0 to represent false, 1 to represent true

| X | Y | X && Y “and” | X || Y “or” | ~Y “not” |
|---|---|--------------|------------|---------|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 |
Logical operators “short-circuit”

\(a > b \quad \&\& \quad c > d \)

- **true**
 - Go on

- **false**
 - Stop

Entire expression is false since the first part is false

A \&\& expression short-circuits to **false** if the **left** operand evaluates to **false**.

A || expression short-circuits to ________________ if

Logical operators “short-circuit”

\[a > b \ || \ c > d \]

- **false** → Go on
- **true** → Stop

Entire expression is true since the first part is true

A `&&` expression short-circuits to false if the left operand evaluates to `false`.

A `||` expression short-circuits to true if the left operand evaluates to `true`.
Why short-circuit?

- Right-hand Boolean expression may be expensive or potentially invalid
- Much clearer than alternatives

```plaintext
if (x < 0.5) \| \| (\tan(x) < 1)
    % ...
end

if (x ~= 0) \&\& (y/x > 1e-8)
    % ...
end
```
Logical operators are required when connecting multiple Boolean expressions

Why is it wrong to use the expression

\[L \leq xc \leq R \]

for checking if \(xc \) is in \([L,R]\)?

Example: Suppose \(L \) is 5, \(R \) is 8, and \(xc \) is 10. We know that 10 is not in \([5,8]\), but the expression

\[L \leq xc \leq R \]

gives…
Stepping back…

Variables \(a, b, \) and \(c \) are integers between 1 and 100. Does this fragment correctly identify when lines of length \(a, b, \) and \(c \) could form a right triangle?

```matlab
if a^2 + b^2 == c^2
    disp('Right tri')
else
    disp('No right tri')
end
```

A: correct
B: false positives
C: false negatives
D: both B & C
\[
a = 5; \\
b = 3; \\
c = 4; \\
if (a^2 + b^2 == c^2)
\]

\[
\quad \text{disp('Right tri')}\\
\text{else} \\
\quad \text{disp('No right tri')}\\
\text{end}
\]

This fragment prints "No" even though we have a right triangle!
a = 5;
b = 3;
c = 4;
if (a^2 + b^2 == c^2) || ...
 (a^2 + c^2 == b^2) || ...
 (b^2 + c^2 == a^2)
 disp('Right tri')
else
 disp('No right tri')
end
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]

\[\text{min at } R \]
Conclusion

If x_c is between L and R

Then min is at x_c

Otherwise

Min value is at one of the endpoints
Start with pseudocode

If xc is between L and R

Min is at xc

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can choose to work with any piece next: the if-else construct/condition, min at xc, or min at an endpoint.
Set up structure first: if-else, condition

```
if \( L \leq xc \) \&\& \( xc \leq R \)

Then min is at \( xc \)

else

Min is at one of the endpoints

end
```

Now refine our solution-in-progress. I’ll choose to work on the if-branch next
Refinement: filled in detail for task “min at xc”

if \(L \leq xc \) \&\& \(xc \leq R \)

\[
q_{\text{Min}} = xc^2 + b*xc + c;
\]

else

Min is at one of the endpoints

end

Continue with refining the solution... else-branch next
Refinement: detail for task “min at an endpoint”

if L<=xc && xc<=R
 \% min is at xc
 qMin= xc^2 + b*xc + c;
else
 \% min is at one of the endpoints
 if \% xc left of bracket
 \% min is at L
 else \% xc right of bracket
 \% min is at R
end
end

Continue with the refinement, i.e., replace comments with code
if $L \leq xc \leq R$
\%
min is at xc
\[
q_{\text{Min}} = xc^2 + b*xc + c;
\]
else
\%
min is at one of the endpoints
\[
\text{if } xc < L
\[
q_{\text{Min}} = L^2 + b*L + c;
\]
else
\[
q_{\text{Min}} = R^2 + b*R + c;
\]
end
end
Final solution (given b,c,L,R,xc)

```matlab
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if xc < L
        qMin= L^2 + b*L + c;
    else
        qMin= R^2 + b*R + c;
    end
end
```

See quadMin.m
quadMinGraph.m
Notice that there are 3 alternatives → can use elseif!

```plaintext
if  L<=xc && xc<=R
  % min is at xc
  qMin= xc^2 + b*xc + c;
else
  % min at one endpt
  if  xc < L
    qMin= L^2 + b*L + c;
  else
    qMin= R^2 + b*R + c;
  end
end
```
An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.
If x_c is between L and R
 Then min value is at x_c

Otherwise
 Min value is at one of the endpoints
if \(L \leq xc \) \&\& \(xc \leq R \)
\%
\% min is at \(xc \)

else
\%
\% min is at one of the endpoints

end
if $L \leq xc \land xc \leq R$
 \% min is at xc

else
 \% min is at one of the endpoints

end
if L<=xc && xc<=R
 % min is at xc
 qMin= xc^2 + b*xc + c;
else
 % min is at one of the endpoints
end
if L<=xc && xc<=R
 \% min is at xc
 qMin= xc^2 + b*xc + c;
else
 \% min is at one of the endpoints
end
if L<=xc && xc<=R
 % min is at xc
 qMin= xc^2 + b*xc + c;
else
 % min is at one of the endpoints
 if xc < L
 else
 end
 end
end
if L<=xc && xc<=R
 \% min is at xc
 qMin= xc^2 + b*xc + c;
else
 \% min is at one of the endpoints
 if xc < L
 qMin= L^2 + b*L + c;
 else
 qMin= R^2 + b*R + c;
 end
end
Testing and debugging

- An integral part of the design loop
- The programmer’s job, not someone else’s
 - Don’t ask TAs “is this right?”; *Run your own tests, then ask for guidance on failures*
- Doesn’t need to be formal, but does need to be thought through

Testing tips

- Know what your immediate goal is
- Look for simple cases, compare with hand-calcs
- Think about corner cases – try to break things while still respecting input constraints
Checkpoint: Should we use this code to decide your grade?

```matlab
score = input('Enter score: ');
if score>55
    disp('D')
elseif score>65
    disp('C')
elseif score>80
    disp('B')
elseif score>93
    disp('A')
else
    disp('Try again')
end
```

A: yes
B: no – high scores might get low grade
C: no – low scores might get high grade
D: no – some scores might get no grade
Question

A stick of unit length is split into two pieces. The breakpoint is randomly selected. On average, how long is the shorter piece?

Physical experiment?
Thought experiment? → analysis
Computational experiment! → simulation

*Need to repeat many trials!