- Previous Lecture (and Discussion):
- Branching (if, elseif, else, end)
- Relational operators (<, >=, ==, ~=, ..., etc.)
- Today's Lecture:
- Logical operators (\&\&, ||, ~) and "short-circuiting"
- More branching—nesting
- Top-down design
- Announcements:
- Project I (PI) due Tuesday $2 / 4$ at I Ipm
- On project due dates (e.g., 2/4), course staff will not check off exercises during office/consulting hours so that we can devote our effort to helping students with the project due. Thanks for your understanding.
- Register your clicker on Canvas - questions will count for credit next time
- Lunch with instructors! Fri, I I:50, sign up on website

Farewell, Spitzer

Spitzer Space Telescope (SIRTF) 2003-2020

Minimum is at L, R, or x_{c}

$$
q(x)=x^{2}+b x+c \quad \bullet x_{c}=-b / 2
$$

Problem 3

Write a code fragment that prints "yes" if xc is in the interval and "no" if it is not.

So what is the requirement?

```
% Determine whether xc is in
% [L,R]
xc = -b/2;
if
    disp('Yes')
else
    disp('No')
end
```


So what is the requirement?

\% Determine whether xc is in
\% [L,R]
$\mathrm{xc}=-\mathrm{b} / 2$;
if $\mathrm{L}<=\mathrm{xc} \& \& \mathrm{xc}<=\mathrm{R}$
disp('Yes')
else
disp('No')
end

The if construct

if boolean expression

statements to execute if expression I is true
elseif boolean expression2
statements to execute if expressionl is false but expression2 is true
:
else
statements to execute if all previous conditions
are false
end

The value of a boolean expression is either true or false.

$$
(L<=x c) \quad \& \& \quad(x c<=R)
$$

Above (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators and (\&\&), or (||)

Also available is the not operator (\sim)

Logical operators

\& \& logical and: Are both conditions true?
E.g., we ask "is $L \leq x_{c}$ and $x_{c} \leq R$?"

In our code: $\mathrm{L}<=\mathrm{xc} \& \& \mathrm{xc}<=\mathrm{R}$

Logical operators

\&\& logical and: Are both conditions true?
E.g., we ask "is $L \leq x_{c}$ and $x_{c} \leq R$?"

In our code: $\mathrm{L}<=\mathrm{xc} \& \& \mathrm{xc}<=\mathrm{R}$
|| logical or: Is at least one condition true?
E.g., we can ask if x_{c} is outside of $[L, R]$,
i.e., "is $x_{c}<L$ or $R<x_{c}$?"

In code: $\mathrm{xc}<\mathrm{L} \| \mathrm{R}<\mathrm{xc}$

Logical operators

\&\& logical and: Are both conditions true?
E.g., we ask "is $L \leq x_{c}$ and $x_{c} \leq R$?"

In our code: $I<=x \subset$ \&\& $x \ll=R$
|| logical or: Is at least one condition true?
E.g., we can ask if x_{c} is outside of $[L, R]$,
i.e., "is $x_{c}<L$ or $R<x_{c}$?"

In code: $x C<L$ || R<xc
\sim logical not: Negation
E.g., we can ask if x_{c} is not outside $[L, R]$. In code: $\sim(x C<L \| R<x c)$
"Truth table"
X, Y represent boolean expressions.
E.g., $\quad d>3.14$

X	Y	$\mathrm{X} \& \& \mathrm{Y}$ "and"	$\mathrm{X} \\| \mathrm{Y}$ "or"	$\sim \mathrm{Y}$ "not"
F	F			
F	T			
T	F			
T	T			

"Truth table"
X, Y represent boolean expressions.
E.g., $\quad d>3.14$

X	Y	$\mathrm{X} \& \& \mathrm{Y}$ "and"	$\mathrm{X} \\| \mathrm{Y}$ "or"	$\sim \mathrm{Y}$ "not"
F	F			
F	T	F		
T	F			
T	T			

"Truth table"
X, Y represent boolean expressions.
E.g., $\quad d>3.14$

X	Y	$\mathrm{X} \& \& \mathrm{Y}$ "and"	$\mathrm{X} \\| \mathrm{Y}$ "or"	$\sim \mathrm{Y}$ "not"
F	F			
F	T	F	T	
T	F			
T	T			

"Truth table"
X, Y represent boolean expressions.
E.g., $\quad d>3.14$

X	Y	X \& \& Y "and"	$\mathrm{X} \\| \mathrm{Y}$ "or"	$\sim Y$ "not"
F	F			
F	T	F	T	F
T	F			
T	T			

Checkpoint

- How many entries in the table are True?

A: 4
B: 5

C: 8
D: other
"Truth table"
X, Y represent boolean expressions.
E.g., $\quad d>3.14$

X	Y	$\begin{aligned} & X \& \& Y \\ & \text { "and" } \end{aligned}$	$\begin{aligned} & X \\| Y \\ & \text { "or" } \end{aligned}$	$\begin{gathered} \sim Y \\ \text { "not" } \end{gathered}$
F	F	F	F	T
F	T	F	T	F
T	F	F	T	T
T	T	T	T	F

"Truth table"
Matlab uses $\mathbf{0}$ to represent false, 1 to represent true

X	Y	$X \& \& Y$ "and"	$X \\| Y$ "or"	$\sim Y$ "not"
0	0	0	0	1
0	1	0	1	0
1	0	0	1	1
1	1	1	1	0

Logical operators "short-circuit"

A \&\& expression shortcircuits to false if the left operand evaluates to false.

A || expression short-circuits to true if the left operand evaluates to true.

Entire expression is true since the first part is true

Why short-circuit?

- Right-hand Boolean expression may be expensive or potentially invalid
- Much clearer than alternatives

```
if (x < 0.5) || (tan(x) < 1)
% ...
end
if (x ~= 0) && (y/x > 1e-8)
    %
end
```

Logical operators are required when connecting multiple Boolean expressions

Why is it wrong to use the expression

$$
\mathrm{L} \leqslant \pm \mathrm{C}<=\mathrm{R}
$$

for checking if x_{c} is in $[L, R]$?

$$
L c=x_{c} \quad \& \& \quad x c<=R
$$

Example: Suppose L is $5, R$ is 8 , and $x c$ is 10 . We know that 10 is not in [5,8], but the expression $\underbrace{\mathrm{L}<=\mathrm{xc}}<=\mathrm{R}$ gives...

Stepping back...

Variables a, b, and c are integers between I and 100. Does this fragment correctly identify when lines of length a, b, and c could form a right triangle?

```
if a^2 + b^2 == c^2
    disp('Right tri')
else
    disp('No right tri')
end
```

```
A: correct
```

B: false positives

C: false negatives

D: both B \& C

$$
\begin{aligned}
& a=5 ; \\
& b=3 ; \\
& c=4 ; \\
& \text { if }\left(a^{\wedge} 2+b^{\wedge} 2==c^{\wedge} 2\right)
\end{aligned}
$$

disp('Right tri')
 else
 disp('No right fri')

end
This fragment prints "No" even though we have a right triangle!

$$
\begin{aligned}
& \mathrm{a}=5 ; \\
& \mathrm{b}=3 ; \\
& \mathrm{c}=4 ; \\
& \text { if }\left(\mathrm{a}^{\wedge} 2+\mathrm{b}^{\wedge} 2==c^{\wedge} 2\right) \quad|\mid \ldots \\
& \quad\left(\mathrm{a}^{\wedge} 2+c^{\wedge} 2==b^{\wedge} 2\right) \quad|\mid \ldots \\
& \quad\left(b^{\wedge} 2+c^{\wedge} 2==a^{\wedge} 2\right) \\
& \quad \text { disp('Right tri') } \\
& \text { else } \\
& \quad \text { disp('No right tri') } \\
& \text { end }
\end{aligned}
$$

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:
-Is the function strictly increasing in $[L, R]$?
-Which is smaller, $q(L)$ or $q(R)$?
\square What is the minimum value of $q(x)$ in $[L, R]$?

$$
q(x)=x^{2}+b x+c \quad \bullet x_{c}=-b / 2
$$

\min at R

$$
q(x)=x^{2}+b x+c \quad \bullet x_{c}=-b / 2
$$

min at L

$$
q(x)=x^{2}+b x+c \quad \bullet x_{c}=-b / 2
$$

Conclusion

If x_{c} is between L and R

Then min is at x_{c}

Otherwise

Min value is at one of the endpoints

Start with pseudocode

If $x c$ is between L and R

Min is at $x c$

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can choose to work with any piece next: the if-else construct/condition, min at $x c$, or \min at an endpoint

Set up structure first: if-else, condition

if $\mathrm{L}<=\mathrm{xc}$ \&\& $\mathrm{xc}<=\mathrm{R}$

Then min is at $x c$
else

Min is at one of the endpoints
end

Now refine our solution-in-progress. I'll choose to work on the if-branch next

Refinement: filled in detail for task "min at xc"

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
```

else

Min is at one of the endpoints
end

Continue with refining the solution... else-branch next

Refinement: detail for task "min at an endpoint"

```
if L<=xc && xc<=R
        % min is at xc
        qMin= xc^2 + b*xc + c;
else
        % min is at one of the endpoints
        if % xc left of bracket
        % min is at L
        else % xc right of bracket
        % min is at R
    end
end
```

Continue with the refinement, i.e., replace comments with code

Refinement: detail for task "min at an endpoint"

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if xc<L
        qMin= L^2 + b*L + c;
    else
        qMin= R^2 + b*R + c;
    end
end
```

Final solution (given b,c,L,R,xc)

Notice that there are 3 alternatives \rightarrow can use elseif!

```
if L<=xC && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min at one endpt
    if xc < L
        qMin= L^2 + b*L + c;
    else
        qMin= R^2 + b*R + c;
    end
end
```

```
if L<=xC && xC<=R
        % min is at xc
        qMin= xc^2 + b*xc + c;
elseif xc < L
    qMin= L^2 + b*L + c;
else
    qMin= R^2 + b*R + C;
end
```


Top-Down Design

An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.

If $x c$ is between L and R
Then $m i n$ value is at $x c$

Otherwise
Min value is at one of the endpoints
if $L<=x C$ \&\& $x C<=R$
\% min is at $x C$
else
\% min is at one of the endpoints
end
if $L<=x C$ \&\& $x c<=R$
\% min is at xc
else
\% min is at one of the endpoints
end
if $L<=x C$ \&\& $x c<=R$
\% min is at $x C$
$q M i n=x c^{\wedge} 2+b * x c+c ;$
else
\% min is at one of the endpoints
end

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
```

else
\% min is at one of the endpoints
end

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
        % min is at one of the endpoints
    if xc < L
    else
    end
end
```

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
        % min is at one of the endpoints
    if xc < L
                qMin= L^2 + b*L + c;
    else
        qMin= R^2 + b*R + c;
    end
end
```


Testing and debugging

- An integral part of the design loop
- The programmer's job, not someone else's
- Don't ask TAs "is this right?"; Run your own tests, then ask for guidance on failures
- Doesn't need to be formal, but does need to be thought through
- Testing tips
- Know what your immediate goal is
- Look for simple cases, compare with hand-calcs
- Think about corner cases - try to break things while still respecting input constraints

Checkpoint: Should we use this code to decide your grade?

```
```

score= input('Enter score: ');

```
```

score= input('Enter score: ');
if score>55
if score>55
disp('D')
disp('D')
elseif score>65
elseif score>65
disp('C')
disp('C')
elseif score>80
elseif score>80
disp('B')
disp('B')
elseif score>93
elseif score>93
disp('A')
disp('A')
else
else
disp('Try again')
disp('Try again')
end

```
```

end

```
```

D: no - some scores
might get no grade

Question

A stick of unit length is split into two pieces. The breakpoint is randomly selected. On average, how long is the shorter piece?

Physical experiment?
Thought experiment? \rightarrow analysis
Computational experiment! \rightarrow simulation

Need to repeat many trials!

