- Previous Lecture (and Discussion):
 - Branching (`if, elseif, else, end`)
 - Relational operators (`<, >=, ==, ~=, …, etc.`)

- Today’s Lecture:
 - Logical operators (`&&, ||, ~`) and “short-circuiting”
 - More branching—`nesting`
 - Top-down design

- Announcements:
 - **Project 1** (P1) due Tuesday 2/4 at 11pm
 - On project due dates (e.g., 2/4), course staff will **not** check off exercises during office/consulting hours so that we can devote our effort to helping students with the project due. Thanks for your understanding.
 - Register your **clicker** on Canvas – questions will count for credit next time
 - Lunch with instructors! Fri, 11:50, sign up on website
Farewell, Spitzer

Spitzer Space Telescope (SIRTF)
2003–2020
Minimum is at L, R, or x_c

\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]
Problem 3

Write a code fragment that prints “yes” if xc is in the interval and “no” if it is not.
So what is the requirement?

% Determine whether xc is in
% [L,R]
x_c = -b/2;

if _________________
 disp('Yes')
else
 disp('No')
end
So what is the requirement?

% Determine whether xc is in [L,R]
xc = -b/2;

if L<=xc && xc<=R
 disp('Yes')
else
 disp('No')
end
The **if** construct

```plaintext
if  boolean expression1
    statements to execute if  expression1  is true
elseif  boolean expression2
    statements to execute if  expression1  is false but  expression2  is true
else
    statements to execute if all previous conditions are false
end
```

Can have any number of elseif branches but at most one else branch
The value of a \textbf{boolean expression} is either \texttt{true} or \texttt{false}.

\[(L \leq xc) \land (xc \leq R)\]

Above (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either \texttt{true} or \texttt{false}.

Connect boolean expressions by \texttt{boolean} operators \texttt{and (\&\&)}, or \texttt{or (| |)}

Also available is the \texttt{not} operator (\texttt{~})
Logical operators

&& logical and: Are both conditions true?

E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”

In our code: $L \leq x_c$ && $x_c \leq R$
Logical operators

&& logical and: Are both conditions true?
E.g., we ask “is \(L \leq x_c \) and \(x_c \leq R \)?”
In our code: \(L \leq x_c \) && \(x_c \leq R \)

|| logical or: Is at least one condition true?
E.g., we can ask if \(x_c \) is outside of \([L,R]\),
i.e., “is \(x_c < L \) or \(R < x_c \)?”
In code: \(x_c < L \) || \(R < x_c \)
Logical operators

&& logical and: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: $L \leq x_c \land x_c \leq R$

|| logical or: Is at least one condition true?
E.g., we can ask if x_c is outside of $[L,R]$,
i.e., “is $x_c < L$ or $R < x_c$?”
In code: $x_c < L \lor R < x_c$

~ logical not: Negation
E.g., we can ask if x_c is not outside $[L,R]$.
In code: $\neg (x_c < L \lor R < x_c)$
“Truth table”

X, Y represent boolean expressions.
E.g., \(d > 3.14 \)

| X | Y | X && Y | X || Y | ~Y |
|---|---|-------|-------|----|
| F | F | F | | |
| F | T | | F | |
| T | F | | | T |
| T | T | | | F |
“Truth table”

X, Y represent boolean expressions.
E.g., $d > 3.14$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$X && Y$</th>
<th>$X \mid\mid Y$</th>
<th>$\sim Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>
“Truth table”

\[X, Y \text{ represent boolean expressions.} \]
\[\text{E.g., } d > 3.14 \]

| X | Y | X && Y | X || Y | ~Y |
|---|---|--------|--------|-----|
| F | F | F | F | |
| F | T | F | T | |
| T | F | | | T |
| T | T | | | |
“Truth table”

\(X, Y\) represent boolean expressions.

E.g., \(d > 3.14\)

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(X && Y) (\text{“and”})</th>
<th>(X | Y) (\text{“or”})</th>
<th>(\sim Y) (\text{“not”})</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Checkpoint

- **How many entries in the table are True?**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>4</td>
</tr>
<tr>
<td>B:</td>
<td>5</td>
</tr>
<tr>
<td>C:</td>
<td>8</td>
</tr>
<tr>
<td>D:</td>
<td>other</td>
</tr>
</tbody>
</table>
“Truth table”

X, Y represent boolean expressions.
E.g., \(d > 3.14 \)

| X | Y | X && Y | X || Y | ~Y |
|---|---|--------|-------|----|
| F | F | F | F | T |
| F | T | F | T | F |
| T | F | F | T | T |
| T | T | T | T | F |
“Truth table”

Matlab uses 0 to represent false, 1 to represent true

| | | **X && Y** | **X || Y** | **~Y** |
|---|---|------------|------------|--------|
| X | Y | “and” | “or” | “not” |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 |
Logical operators “short-circuit”

A && expression short-circuits to **false** if the left operand evaluates to **false**.

A || expression short-circuits to __________________ if ___________________________

Entire expression is false since the first part is false
Logical operators “short-circuit”

A \&\& expression short-circuits to false if the left operand evaluates to \textit{false}.

A || expression short-circuits to true if the left operand evaluates to \textit{true}.

\[a > b \ || \ c > d \]

<table>
<thead>
<tr>
<th>False</th>
<th>Go on</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>Stop</td>
</tr>
</tbody>
</table>

Entire expression is true since the first part is true.
Why short-circuit?

- Right-hand Boolean expression may be expensive or potentially invalid
- Much clearer than alternatives

```plaintext
if (x < 0.5) || (tan(x) < 1)
  % ...
end

if (x ~= 0) && (y/x > 1e-8)
  % ...
end
```
Logical operators are required when connecting multiple Boolean expressions

Why is it wrong to use the expression

\[L \leq x_c \leq R \]

for checking if \(x_c \) is in \([L,R]\)?

Example: Suppose \(L \) is 5, \(R \) is 8, and \(x_c \) is 10. We know that 10 is not in \([5,8]\), but the expression

\[L \leq x_c \land x_c \leq R \]

gives…
Variables \(a, b, \) and \(c \) are integers between 1 and 100. Does this fragment correctly identify when lines of length \(a, b, \) and \(c \) could form a right triangle?

```matlab
if a^2 + b^2 == c^2
    disp('Right tri')
else
    disp('No right tri')
end
```

A: correct
B: false positives
C: false negatives
D: both B & C

Stepping back…
\text{This fragment prints } \text{“No” even though we have a right triangle!}
a = 5;
b = 3;
c = 4;
if (a^2 + b^2 == c^2) || ...
 (a^2 + c^2 == b^2) || ...
 (b^2 + c^2 == a^2)
 disp('Right tri')
else
 disp('No right tri')
end
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]

min at \(R \)
\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]

Minimizing at \(L \)
\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]

min at \(x_c \)
Conclusion

If x_c is between L and R

Then min is at x_c

Otherwise

Min value is at one of the endpoints
Start with pseudocode

If xc is between L and R

Min is at xc

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can choose to work with any piece next: the if-else construct/condition, min at xc, or min at an endpoint.
Set up structure first: if-else, condition

if \(L \leq xc \leq R \)

Then min is at \(xc \)

else

Min is at one of the endpoints

end

Now refine our solution-in-progress. I'll choose to work on the if-branch next
Refinement: filled in detail for task “min at xc”

\[
\text{if } L \leq xc \land xc \leq R \\
\text{\quad \% min is at xc} \\
qMin = xc^2 + b*xc + c;
\]

\text{else} \\
\quad \text{Min is at one of the endpoints} \\
\text{end}

\text{Continue with refining the solution... else-branch next}
Refinement: detail for task “min at an endpoint”

```matlab
if L<=xc && xc<=R
    % min is at xc
    qMin = xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if % xc left of bracket
        % min is at L
    else % xc right of bracket
        % min is at R
    end
end
```

Continue with the refinement, i.e., replace comments with code
Refinement: detail for task “min at an endpoint”

if $L \leq xc \&\& xc \leq R$
 \% min is at xc
 $q_{\text{Min}} = xc^2 + b*xc + c$;
else
 \% min is at one of the endpoints
 if $xc < L$
 $q_{\text{Min}} = L^2 + b*L + c$;
 else
 $q_{\text{Min}} = R^2 + b*R + c$;
 end
end
Final solution (given b,c,L,R,xc)

if \(L \leq xc \) \&\& \(xc \leq R \)
 \% min is at \(xc \)
 qMin\(= xc^2 + b*xc + c; \)
else
% min is at one of the endpoints
 if \(xc < L \)
 qMin\(= L^2 + b*L + c; \)
 else
 qMin\(= R^2 + b*R + c; \)
 end
end

See quadMin.m
quadMinGraph.m
Notice that there are 3 alternatives → can use elseif!

if \(L \leq xc \&\& xc \leq R \)
% min is at xc
 qMin = xc^2 + b*xc + c;
else
 % min at one endpt
 if \(xc < L \)
 qMin = L^2 + b*L + c;
 else
 qMin = R^2 + b*R + c;
 end
end

if \(L \leq xc \&\& xc \leq R \)
 % min is at xc
 qMin = xc^2 + b*xc + c;
elseif \(xc < L \)
 qMin = L^2 + b*L + c;
else
 qMin = R^2 + b*R + c;
end
An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.
If xc is between L and R
 Then min value is at xc

Otherwise
 Min value is at one of the endpoints
if \(L \leq xc \) && \(xc \leq R \)

\% min is at \(xc \)

else

\% min is at one of the endpoints

end
if \(L \leq xc \) && \(xc \leq R \)
 \% min is at \(xc \)

else
 \% min is at one of the endpoints

end
if $L \leq xc \leq R$
 \% min is at xc
 \quad qMin = xc^2 + b*xc + c;
else
 \% min is at one of the endpoints
end
if L<=xc && xc<=R
 \% min is at xc
 qMin= xc^2 + b*xc + c;
else
 \% min is at one of the endpoints
end
if L<=xc && xc<=R
 \% min is at xc
 qMin= xc^2 + b*xc + c;
else
 \% min is at one of the endpoints
 if xc < L

 else

 end
end
if $L \leq xc \leq R$
 \% min is at xc
 qMin = xc^2 + b*xc + c;
else
 \% min is at one of the endpoints
 if $xc < L$
 qMin = L^2 + b*L + c;
 else
 qMin = R^2 + b*R + c;
 end
end
Testing and debugging

- An integral part of the design loop
- The programmer’s job, not someone else’s
 - Don’t ask TAs “is this right?”; *Run your own tests, then ask for guidance on failures*
- Doesn’t need to be formal, but does need to be thought through

Testing tips

- Know what your immediate goal is
- Look for simple cases, compare with hand-calcs
- Think about corner cases – try to break things while still respecting input constraints
Checkpoint: Should we use this code to decide your grade?

```matlab
score = input('Enter score: ');
if score > 55
    disp('D')
elseif score > 65
    disp('C')
elseif score > 80
    disp('B')
elseif score > 93
    disp('A')
else
    disp('Try again')
end
```

A: yes
B: no – high scores might get low grade
C: no – low scores might get high grade
D: no – some scores might get no grade
Question

A stick of unit length is split into two pieces. The breakpoint is randomly selected. On average, how long is the shorter piece?

Physical experiment?

Thought experiment? → analysis

Computational experiment! → simulation

Need to repeat many trials!