
◼ Previous Lecture (and Discussion):
◼ Branching (if, elseif, else, end)

◼ Relational operators (<, >=, ==, ~=, …, etc.)

◼ Today’s Lecture:
◼ Logical operators (&&, ||, ~) and “short-circuiting”

◼ More branching—nesting

◼ Top-down design

◼ Announcements:
◼ Project 1 (P1) due Tuesday 2/4 at 11pm

◼ On project due dates (e.g., 2/4), course staff will not check off
exercises during office/consulting hours so that we can devote our
effort to helping students with the project due. Thanks for your
understanding.

◼ Register your clicker on Canvas – questions will count for credit next
time

◼ Lunch with instructors! Fri, 11:50, sign up on website

Farewell, Spitzer
Spitzer Space Telescope (SIRTF)

2003–2020

cbxxxq ++= 2)(2/bxc −=

L R
x

Minimum is at L, R, or xc

Write a code fragment that prints

“yes” if xc is in the interval and “no”

if it is not.

Problem 3

So what is the requirement?

% Determine whether xc is in

% [L,R]

xc = -b/2;

if ________________

disp('Yes')

else

disp('No')

end

So what is the requirement?

% Determine whether xc is in

% [L,R]

xc = -b/2;

if L<=xc && xc<=R

disp('Yes')

else

disp('No')

end

The if construct

if boolean expression1

statements to execute if expression1 is true

elseif boolean expression2

statements to execute if expression1 is false

but expression2 is true

:

else

statements to execute if all previous conditions

are false

end

The value of a boolean expression is either true or false.

(L<=xc) && (xc<=R)

Above (compound) boolean expression is made

up of two (simple) boolean expressions. Each

has a value that is either true or false.

Connect boolean expressions by boolean
operators and (&&), or (||)

Also available is the not operator (~)

Logical operators

&& logical and: Are both conditions true?

E.g., we ask “is L  xc and xc  R ?”

In our code: L<=xc && xc<=R

Logical operators

&& logical and: Are both conditions true?

E.g., we ask “is L  xc and xc  R ?”

In our code: L<=xc && xc<=R

|| logical or: Is at least one condition true?

E.g., we can ask if xc is outside of [L,R],

i.e., “is xc < L or R < xc ?”

In code: xc<L || R<xc

Logical operators

&& logical and: Are both conditions true?

E.g., we ask “is L  xc and xc  R ?”

In our code: L<=xc && xc<=R

|| logical or: Is at least one condition true?

E.g., we can ask if xc is outside of [L,R],

i.e., “is xc < L or R < xc ?”

In code: xc<L || R<xc

~ logical not: Negation

E.g., we can ask if xc is not outside [L,R].

In code: ~(xc<L || R<xc)

“Truth table”

X Y X &&Y

“and”

X ||Y

“or”

~Y

“not”

F F

F T

T F

T T

X, Y represent boolean expressions.
E.g., d>3.14

“Truth table”

X Y X &&Y

“and”

X ||Y

“or”

~Y

“not”

F F

F T

T F

T T

X, Y represent boolean expressions.
E.g., d>3.14

“Truth table”

X Y X &&Y

“and”

X ||Y

“or”

~Y

“not”

F F

F T

T F

T T

X, Y represent boolean expressions.
E.g., d>3.14

“Truth table”

X Y X &&Y

“and”

X ||Y

“or”

~Y

“not”

F F

F T

T F

T T

X, Y represent boolean expressions.
E.g., d>3.14

Checkpoint

◼ How many entries in the table are True?

A: 4

B: 5

C: 8

D: other

“Truth table”

X Y X &&Y

“and”

X ||Y

“or”

~Y

“not”

F F F F T

F T F T F

T F F T T

T T T T F

X, Y represent boolean expressions.
E.g., d>3.14

“Truth table”

X Y X &&Y

“and”

X ||Y

“or”

~Y

“not”

0 0 0 0 1

0 1 0 1 0

1 0 0 1 1

1 1 1 1 0

Matlab uses 0 to represent false,
1 to represent true

Logical operators “short-circuit”

a > b && c > d

true Go on

a > b && c > d

false Stop

Entire expression is false since

the first part is false

A && expression short-

circuits to false if the left

operand evaluates to false.

A || expression short-circuits

to _________________ if

Logical operators “short-circuit”

a > b || c > d

false Go on

a > b || c > d

true Stop

Entire expression is true since

the first part is true

A && expression short-

circuits to false if the left

operand evaluates to false.

A || expression short-circuits

to true if the left operand

evaluates to true.

Why short-circuit?

◼ Right-hand Boolean expression may

be expensive or potentially invalid

◼ Much clearer than alternatives

if (x < 0.5) || (tan(x) < 1)

% ...

end

if (x ~= 0) && (y/x > 1e-8)

% ...

end

Logical operators are required when connecting

multiple Boolean expressions

Why is it wrong to use the expression

L <= xc <= R

for checking if xc is in [L,R]?

Example: Suppose L is 5, R is 8, and xc is 10. We know

that 10 is not in [5,8], but the expression

L <= xc <= R gives…

Variables a, b, and c are integers between 1 and 100.

Does this fragment correctly identify when lines of

length a, b, and c could form a right triangle?

if a^2 + b^2 == c^2

disp('Right tri')

else

disp('No right tri')

end

A: correct

B: false positives

C: false negatives

D: both B & C

Stepping back…

a = 5;

b = 3;

c = 4;

if (a^2 + b^2 == c^2)

disp('Right tri')

else

disp('No right tri')

end

5
4

3

a = 5;

b = 3;

c = 4;

if (a^2 + b^2 == c^2) || ...

(a^2 + c^2 == b^2) || ...

(b^2 + c^2 == a^2)

disp('Right tri')

else

disp('No right tri')

end

Consider the quadratic function

q(x) = x2 + bx + c

on the interval [L , R]:

◼Is the function strictly increasing in [L , R]?

◼Which is smaller, q(L) or q(R) ?

◼What is the minimum value of q(x) in [L , R]?

x

q(x)

cbxxxq ++= 2)(2/bxc −=

L R
x

min at R

cbxxxq ++= 2)(2/bxc −=

L R
x

min at L

cbxxxq ++= 2)(2/bxc −=

L R
x

min at xc

Conclusion

If xc is between L and R

Then min is at xc

Otherwise

Min value is at one of the endpoints

Start with pseudocode

If xc is between L and R

Min is at xc

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can
choose to work with any piece next: the if-else
construct/condition, min at xc, or min at an endpoint

Set up structure first: if-else, condition

if L<=xc && xc<=R

Then min is at xc

else

Min is at one of the endpoints

end

Now refine our solution-in-progress. I’ll choose to work on the
if-branch next

Refinement: filled in detail for task “min at xc”

if L<=xc && xc<=R

% min is at xc

qMin= xc^2 + b*xc + c;

else

Min is at one of the endpoints

end

Continue with refining the solution… else-branch next

Refinement: detail for task “min at an endpoint”

if L<=xc && xc<=R

% min is at xc

qMin= xc^2 + b*xc + c;

else

% min is at one of the endpoints

if % xc left of bracket

% min is at L

else % xc right of bracket

% min is at R

end

end

Continue with the refinement, i.e., replace comments with code

Refinement: detail for task “min at an endpoint”

if L<=xc && xc<=R

% min is at xc

qMin= xc^2 + b*xc + c;

else

% min is at one of the endpoints

if xc < L

qMin= L^2 + b*L + c;

else

qMin= R^2 + b*R + c;

end

end

Final solution (given b,c,L,R,xc)

if L<=xc && xc<=R

% min is at xc

qMin= xc^2 + b*xc + c;

else

% min is at one of the endpoints

if xc < L

qMin= L^2 + b*L + c;

else

qMin= R^2 + b*R + c;

end

end

See quadMin.m
quadMinGraph.m

Notice that there are 3 alternatives→can use elseif!

if L<=xc && xc<=R

% min is at xc

qMin= xc^2 + b*xc + c;

else

% min at one endpt

if xc < L

qMin= L^2 + b*L + c;

else

qMin= R^2 + b*R + c;

end

end

if L<=xc && xc<=R

% min is at xc

qMin= xc^2 + b*xc + c;

elseif xc < L

qMin= L^2 + b*L + c;

else

qMin= R^2 + b*R + c;

end

Top-Down Design

State problem

Define inputs
& outputs

Design algorithm

Convert algorithm
to program

Test and debug

An algorithm is an idea. To use an algorithm you must
choose a programming language and implement the

algorithm.

Decomposition

Stepwise
refinement

If xc is between L and R

Then min value is at xc

Otherwise

Min value is at one of the endpoints

if L<=xc && xc<=R

% min is at xc

else

% min is at one of the endpoints

end

if L<=xc && xc<=R

% min is at xc

else

% min is at one of the endpoints

end

if L<=xc && xc<=R

% min is at xc

qMin= xc^2 + b*xc + c;

else

% min is at one of the endpoints

end

if L<=xc && xc<=R

% min is at xc

qMin= xc^2 + b*xc + c;

else

% min is at one of the endpoints

end

if L<=xc && xc<=R

% min is at xc

qMin= xc^2 + b*xc + c;

else

% min is at one of the endpoints

if xc < L

else

end

end

if L<=xc && xc<=R

% min is at xc

qMin= xc^2 + b*xc + c;

else

% min is at one of the endpoints

if xc < L

qMin= L^2 + b*L + c;

else

qMin= R^2 + b*R + c;

end

end

Testing and debugging

◼ An integral part of the design loop

◼ The programmer’s job, not

someone else’s

◼ Don’t ask TAs “is this right?”;

Run your own tests, then ask for

guidance on failures

◼ Doesn’t need to be formal, but

does need to be thought through

◼ Testing tips

◼ Know what your immediate goal is

◼ Look for simple cases, compare with

hand-calcs

◼ Think about corner cases – try to

break things while still respecting

input constraints

Checkpoint: Should we use this code to decide your grade?

score= input('Enter score: ');

if score>55

disp('D')

elseif score>65

disp('C')

elseif score>80

disp('B')

elseif score>93

disp('A')

else

disp('Try again')

end

A: yes

B: no – high scores
might get low grade

C: no – low scores
might get high grade

D: no – some scores
might get no grade

Question

A stick of unit length is split into two pieces. The breakpoint is

randomly selected. On average, how long is the shorter piece?

Physical experiment?

Thought experiment? → analysis

Computational experiment! → simulation

