
 Previous Lecture (and lab):

 Variables & assignment

 Built-in functions, input & output

 Good programming style (meaningful variable names; use

comments)

 Today, Lecture 3:

 Writing a program—systematic problem solving

 Branching (conditional statements)

Announcements:
 Discussion sections in Upson 225 lab this week, not classroom listed

on Student Center

 Project 1 (P1) to be posted after lecture; due Tue, Feb 4, at 11pm

 Pay attention to Academic Integrity

 Matlab consultants at ACCEL Green Rm (Carpenter Hall 2nd floor

computing facility) 4:30–9:30pm Sun.–Thurs.

 Piazza – “Q & A system” for all students in CS1112. Use it for

clarification only—do not ask (or answer) homework questions and

do not give hints on homework. Will be monitored by TAs.

 Reading from the textbook is important for your learning. Read the

specified sections BEFORE lecture

 Review material a little bit each day

 Take notes during lecture

 Enroll in the optional AEWs (or sign up on the wait list)

Quick review

 Variable

 A named memory space to store a value

 Assignment operator: =

 Let x be a variable that has a value. To give variable y the same value as x, which

statement below should you write?

x = y or y = x

 Script (program)

 A sequence of statements saved in an m-file

 ; (semi-colon)

 Suppresses printing of the result of assignment statement

Tips for writing a program

 Check that you know what is given (or is input, or is assumed)

 Be goal-oriented: start by writing the last statement(s) for the program output

 What is the program supposed to produce? You know this from the problem statement

 Allows you to work backwards from the results

 Name as a variable what you don’t know

 Helps you break down the steps

 Allows you to temporarily skip over any part that you don’t know yet how to do

% Compute surface area increase of a sphere in

% miles^2 given an increase in the radius in inches

r= input('Enter radius r in miles: ');

delta= input('Enter delta r in inches: ');

newr= r + (delta/12)/5280; % mi

A= 4*pi*r^2; % mi^2

newA= 4*pi*newr^2; % mi^2

deltaA= newA – A; % mi^2

fprintf('Increase in mile^2 is %f.\n', deltaA)

r
δ

Beyond batching

 So far, all the statements in our scripts are executed in order

 We do not have a way to specify that some statements should be

executed only under some condition

 Want to be able to make decisions

 We need a new language construct…

Motivation

Consider the quadratic function

q(x) = x2 + bx + c

on the interval [L , R]:

Is the function strictly increasing in [L , R]?

Which is smaller, q(L) or q(R) ?

What is the minimum value of q(x) in [L , R]?

x

q(x)

L R

Write a code fragment that prints

“Increasing” if q(x) strictly increases across

the interval and “Not increasing” if it does

not.

Problem 1

% Quadratic q(x) = x^2 + bx + c

b = input('Enter b: ');

c = input('Enter c: ');

L = input('Enter L: ');

R = input('Enter R, R>L: ');

% Determine whether q increases

% across [L,R]

 What are the critical points?

 End points: x = L , x = R

 { x | q’(x) = 0 } x

q(x)

 What are the critical points?

 End points: x = L , x = R

 { x | q’(x) = 0 } x

q(x)

cbxxxq 2)(2/bxc

The Situation

x

cbxxxq 2)(2/bxc

L R
x

No!

Does q(x) increase across [L,R]?

So what is the requirement?

% Determine whether q increases

% across [L,R]

xc = -b/2;

if ________________

fprintf('Increasing\n')

else % otherwise

fprintf('Not increasing\n')

end

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

~= Not equal to

Relational Operators

So what is the requirement?

% Determine whether q increases

% across [L,R]

xc = -b/2;

if ________________

fprintf('Increasing\n')

else

fprintf('Not increasing\n')

end

A: R >= xc

B: xc <= R

C: xc <= L

D: L <= xc

Final code

% Determine whether q increases

% across [L,R]

xc = -b/2;

if xc <= L

fprintf('Increasing\n')

else

fprintf('Not increasing\n')

end

Write a code fragment that prints

“qleft is smaller”

if q(L) is smaller than q(R).

If q(R) is smaller print

“qright is smaller.”

Problem 2

Calculate q(L)

Calculate q(R)

If q(L) < q(R)

print “qleft is smaller”

Otherwise

print “qright is smaller”

Algorithm v0

Calculate xc

If distance xcL is smaller than distance xcR

print “qleft is smaller”

Otherwise

print “qright is smaller”

Algorithm v0.1

Do these two fragments do the same thing?

% given x, y

if x>y

disp(‘alpha’)

else

disp(‘beta’)

end

% given x, y

if y>x

disp(‘beta’)

else

disp(‘alpha’)

end

A: yes B: no

Calculate xc

If distance xcL is smaller than distance xcR

print “qleft is smaller”

Otherwise

print “qright is smaller or equals qleft”

Algorithm v1.1

Calculate xc

If distance xcL is same as distance xcR

print “qleft and qright are equal”

Otherwise, if xcL is shorter than xcR

print “qleft is smaller”

Otherwise

print “qright is smaller”

Algorithm v2.1

% Which is smaller, q(L) or q(R)?

xc= -b/2; % x at minimum

if (abs(xc-L) == abs(xc-R))

disp('qleft and qright are equal')

elseif (abs(xc-L) < abs(xc-R))

disp('qleft is smaller')

else

disp('qright is smaller')

end

Calculate q(L)

Calculate q(R)

If q(L) equals q(R)

print “qleft and qright are equal”

Otherwise, if q(L) < q(R)

print “qleft is smaller”

Otherwise

print “qright is smaller”

Algorithm v2

% Which is smaller, q(L) or q(R)?

qL= L*L + b*L + c; % q(L)

qR= R*R + b*R + c; % q(R)

if (qL == qR)

disp('qleft and qright are equal')

elseif (qL < qR)

disp('qleft is smaller')

else

disp('qright is smaller')

end

% Which is smaller, q(L) or q(R)?

qL= L*L + b*L + c; % q(L)

qR= R*R + b*R + c; % q(R)

if (qL == qR)

disp('qleft and qright are equal')

fprintf('q value is %f\n', qL)

elseif (qL < qR)

disp('qleft is smaller')

else

disp('qright is smaller')

end

Consider the quadratic function

q(x) = x2 + bx + c

on the interval [L , R]:

What if you only want to know if q(L) is close to q(R)?

% Is q(L) close to q(R)?

tol= 1e-4; % tolerance

qL= L*L + b*L + c

qR= R*R + b*R + c

if (abs(qL-qR) < tol)

disp('qleft and qright similar')

end

else is optional in an if-
statement. This if-statement
without else is correct.

The if construct

if boolean expression1

statements to execute if expression1 is true

elseif boolean expression2

statements to execute if expression1 is false

but expression2 is true

:

else

statements to execute if all previous conditions

are false

end

Things to know about the if construct

 At most one branch of statements is executed

 There can be any number of elseif clauses

 There can be at most one else clause

 The else clause must be the last clause in the construct

 The else clause does not have a condition (boolean expression)

Write a code fragment that prints

“Inside” if xc is in the interval and

“Outside” if it is not.

Problem 3

cbxxxq 2)(2/bxc

L R
x

No!

Is xc in the interval [L,R]?

Logical operators

&& logical and: Are both conditions true?

E.g., we ask “is Lxc and xc R ?”

In our code: L<=xc && xc<=R

|| logical or: Is at least one condition true?

E.g., we can ask if xc is outside of [L,R],

i.e., “is xc L or R xc ?”

In code: xc<L || R<xc

~ logical not: Negation

E.g., we can ask if xc is not outside [L,R].

In code: ~(xc<L || R<xc)

