- Previous Lecture (and lab):
 - Variables & assignment
 - Built-in functions, input & output
 - Good programming style (meaningful variable names; use comments)

- Today, Lecture 3:
 - Writing a program—systematic problem solving
 - Branching (conditional statements)
Announcements:

- Discussion sections in Upson 225 lab this week, not classroom listed on Student Center
- Project 1 (P1) to be posted after lecture; due Tue, Feb 4, at 11pm
 - Pay attention to Academic Integrity
- Matlab consultants at ACCEL Green Rm (Carpenter Hall 2nd floor computing facility) 4:30–9:30pm Sun.–Thurs.
- Piazza – “Q & A system” for all students in CS1112. Use it for clarification only—do not ask (or answer) homework questions and do not give hints on homework. Will be monitored by TAs.
- Reading from the textbook is important for your learning. Read the specified sections BEFORE lecture
 - Review material a little bit each day
 - Take notes during lecture
- Enroll in the optional AEWs (or sign up on the wait list)
Quick review

- **Variable**
 - A named memory space to store a value

- **Assignment operator:**
 - Let x be a variable that has a value. To give variable y the same value as x, which statement below should you write?
 - $x = y$
 - $y = x$

- **Script (program)**
 - A sequence of statements saved in an m-file

- **; (semi-colon)**
 - Suppresses printing of the result of assignment statement
Tips for writing a program

- Check that you know what is given (or is input, or is assumed)
- Be goal-oriented: start by writing the last statement(s) for the program output
 - What is the program supposed to produce? You know this from the problem statement
 - Allows you to work backwards from the results
- Name as a variable what you don’t know
 - Helps you break down the steps
 - Allows you to temporarily skip over any part that you don’t know yet how to do
Compute surface area increase of a sphere in miles\(^2\) given an increase in the radius in inches

\[r = \text{input('Enter radius } r \text{ in miles: ')}; \]
\[\text{delta} = \text{input('Enter } \delta r \text{ in inches: ')}; \]
\[\text{newr} = r + (\text{delta}/12)/5280; \quad \% \text{ mi} \]
\[A = 4\pi r^2; \quad \% \text{ mi}^2 \]
\[\text{newA} = 4\pi \text{newr}^2; \quad \% \text{ mi}^2 \]
\[\text{deltaA} = \text{newA} - A; \quad \% \text{ mi}^2 \]

\text{fprintf('Increase in mile}^2\text{ is }\%f.\backslash n', \text{deltaA})
Beyond batching

- So far, *all* the statements in our scripts are executed in order
- We do not have a way to specify that some statements should be executed only under some condition
 - Want to be able to make decisions
- We need a new language construct…
Motivation

Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
Problem 1

Write a code fragment that prints “Increasing” if $q(x)$ strictly increases across the interval and “Not increasing” if it does not.
\texttt{\% Quadratic } q(x) = x^2 + bx + c
\begin{verbatim}
b = input('Enter b: ');
c = input('Enter c: ');
L = input('Enter L: ');
R = input('Enter R, R>L: ');
\end{verbatim}
\texttt{\% Determine whether q increases}
\texttt{\% across [L,R]}

What are the critical points?

- End points: $x = L, x = R$
- $\{ x \mid q'(x) = 0 \}$
What are the critical points?

- End points: $x = L, x = R$
- $\{ x \mid q'(x) = 0 \}$
The Situation

\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]
Does $q(x)$ increase across $[L,R]$?

$q(x) = x^2 + bx + c$

$x_c = -\frac{b}{2}$

No!
So what is the requirement?

\%
Determine whether \(q \) increases across \([L,R]\)
xc = \(-b/2\);

if ________________

 fprintf('Increasing\n')
else \% otherwise

 fprintf('Not increasing\n')
end

Relational Operators

< Less than
> Greater than
\<= Less than or equal to
\>= Greater than or equal to
== Equal to
~= Not equal to
So what is the requirement?

% Determine whether q increases
% across [L,R]
xc = -b/2;
if _______________
 fprintf('Increasing\n')
else
 fprintf('Not increasing\n')
end

A: R >= xc
B: xc <= R
C: xc <= L
D: L <= xc
Final code

% Determine whether q increases
% across [L,R]
xc = -b/2;

if xc <= L
 fprintf('Increasing\n')
else
 fprintf('Not increasing\n')
end
Problem 2

Write a code fragment that prints "qleft is smaller" if q(L) is smaller than q(R).
If q(R) is smaller print "qright is smaller."
Algorithm v0

Calculate $q(L)$
Calculate $q(R)$

If $q(L) < q(R)$
 print "qleft is smaller"
Otherwise
 print "qright is smaller"
Algorithm v0.1

Calculate x_c

If distance x_cL is smaller than distance x_cR

print “qlleft is smaller”

Otherwise

print “qr right is smaller”
Do these two fragments do the same thing?

% given x, y
if x>y
 disp('alpha')
else
 disp('beta')
end

% given x, y
if y>x
 disp('beta')
else
 disp('alpha')
end

A: yes B: no
Algorithm v1.1

Calculate x_c
If distance x_cL is smaller than distance x_cR
 print “qleft is smaller”
Otherwise
 print “qright is smaller or equals qleft”
Algorithm v2.1

Calculate x_c

If distance $x_c L$ is same as distance $x_c R$
 print “qleft and qright are equal”
Otherwise, if $x_c L$ is shorter than $x_c R$
 print “qleft is smaller”
Otherwise
 print “qright is smaller”
% Which is smaller, q(L) or q(R)?

xc = -b/2; % x at minimum
if (abs(xc-L) == abs(xc-R))
 disp('qleft and qright are equal')
elseif (abs(xc-L) < abs(xc-R))
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
Calculate $q(L)$
Calculate $q(R)$
If $q(L)$ equals $q(R)$
 print “q_{left} and q_{right} are equal”
Otherwise, if $q(L) < q(R)$
 print “q_{left} is smaller”
Otherwise
 print “q_{right} is smaller”
% Which is smaller, q(L) or q(R)?

qL = L*L + b*L + c; % q(L)
qR = R*R + b*R + c; % q(R)
if (qL == qR)
 disp('qleft and qright are equal')
elseif (qL < qR)
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
% Which is smaller, q(L) or q(R)?

qL = L*L + b*L + c; % q(L)
qR = R*R + b*R + c; % q(R)
if (qL == qR)
 disp('qleft and qright are equal')
 fprintf('q value is %fn', qL)
elseif (qL < qR)
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

What if you only want to know if \(q(L)\) is close to \(q(R)\)?
% Is \(q(L) \) close to \(q(R) \)?

tol = 1e-4; \quad \% \text{tolerance}
qL = L*L + b*L + c
qR = R*R + b*R + c
if (abs(qL-qR) < tol)
 disp('qleft and qright similar')
end

 ELSE is optional in an if-statement. This if-statement without ELSE is correct.
The *if* construct

```plaintext
if  
  boolean expression1
  statements to execute if expression1 is true
elseif  boolean expression2
  statements to execute if expression1 is false but expression2 is true
 :
else
  statements to execute if all previous conditions are false
end
```

Can have any number of elseif branches but at most one else branch
Things to know about the **if** construct

- **At most one** branch of statements is executed
- There can be **any number of elseif** clauses
- There can be **at most one else** clause
- The **else** clause **must be the last clause** in the construct
- The **else** clause **does not have a condition** (boolean expression)
Problem 3

Write a code fragment that prints “Inside” if xc is in the interval and “Outside” if it is not.
Is xc in the interval $[L,R]$?

$$q(x) = x^2 + bx + c$$

$\bullet \quad x_c = -b / 2$

No!
Logical operators

&& logical and: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: $L \leq x_c \land x_c \leq R$

| | logical or: Is at least one condition true?
E.g., we can ask if x_c is outside of $[L,R]$, i.e., “is $x_c \leq L$ or $R \leq x_c$?”
In code: $x_c < L \lor R < x_c$

~ logical not: Negation
E.g., we can ask if x_c is not outside $[L,R]$. In code: $\neg (x_c < L \lor R < x_c)$