- Previous Lecture:

Remember:

- Intro to the course
- "Computational senses"
- Running a program in Matlab
- Today, Lecture 2:
- Anatomy of a program
- Variables, assignment, mathematical operations
- Functions for input \& output
- Writing a program—systematic problem solving
- Announcements:
- Set up folders (directories) on your laptop, flash drive, or cloud storage to store course files (see website announcement)
- Register your clicker or clicker app (see links in Syllabus)
- See website for office hours and consulting hours
- First project will be posted after Tue lecture

Formula

- Surface area of a sphere?

Formula

- Surface area of a sphere? $A=4 \pi r^{2}$

Formula

- Surface area of a sphere?

$$
A=4 \pi r^{2}
$$

- Have the cosine of some angle θ in [0, pi/2] and want $\cos (\theta / 2)$?

Formula

- Surface area of a sphere?

$$
A=4 \pi r^{2}
$$

- Have the cosine of some angle θ in [0, pi/2] and want $\cos (\theta / 2)$?

$$
\cos (\theta / 2)=\sqrt{\frac{1+\cos (\theta)}{2}}
$$

Interactive computation in Command Window

$$
\begin{aligned}
& \gg r=6 \\
& r= \\
& \gg a=4 * p i * r^{\wedge} 2 \\
& a= \\
& 452.3893 \\
& \gg v=4 / 3^{*} p^{*} * r^{\wedge} 3 \\
& v= \\
& 904.7787
\end{aligned}
$$

\% Example 1_1: Surface area of a sphere
\% r : radius of the sphere [unit]
\% A: surface area of the sphere [unit^2]
\% Example 1_1: Surface area of a sphere
\% r: radius of the sphere [unit]
\% A: surface area of the sphere [unit^2]

r= input('Enter the radius: ');

\% Example 1_1: Surface area of a sphere
\% r : radius of the sphere [unit]
\% A: surface area of the sphere [unit^2]
r= input('Enter the radius: ');
A= 4*pi*r^2;
\% Example 1_1: Surface area of a sphere
\% r : radius of the sphere [unit]
\% A: surface area of the sphere [unit^2]
r= input('Enter the radius: ');
A= 4*pi*r^2;
fprintf('Surface area is $\% \mathrm{f}$ units^2! ${ }^{\prime} \mathbf{n ' ~}^{\prime}$, A)

A computer program

Where does computation happen?

- Code lives on a disk (hard drive)
- Matlab: Folder pane

- Variables live in memory (RAM)
- Matlab: Workspace pane

Variable \& assignment

- Variable: a named computer memory space for storing a value

Variable \& assignment

- Variable: a named computer memory space for storing a value

- Valid names start with a letter, can contain digits
- Use meaningful variable names!
- Create a variable by assigning a value to it
- By default, a number has the type (class) double, for "double precision floating point number"

Variable \& assignment

- Variable: a named space for storing a value

- Assignment: putting a value into a variable
- Assignment operator: =
- An assignment statement, e.g., $r=2 * 4.5$
- Expression on right-hand-side (rhs) is evaluated before the assignment operation
- Update variable's value with another assignment statement, e.g., r= 7

Assignment

- Expression on rhs is evaluated before the assignment operation
- Examples:

$$
\begin{aligned}
& x=2 * 3.14 \\
& y=1+x \\
& z=4^{\wedge} 2-\cos (y)
\end{aligned}
$$

Assignment

- Expression on rhs is evaluated before the assignment operation
- Examples:

$$
\begin{aligned}
& x=2 \star 3.14 \\
& y=1+x \\
& z=4^{\wedge} 2-\cos (y)
\end{aligned}
$$

- Question: can we reverse the order of the 3 statements above?

Assignment

- Expression on rhs is evaluated before the assignment operation
- Examples:

$$
\begin{aligned}
& x=2 * 3.14 \\
& y=1+x \\
& z=4^{\wedge} 2-\cos (y)
\end{aligned}
$$

- Question: can we reverse the order of the 3 statements above?
- NO! Any variable on the rhs must be initialized.

Assignment

- Expression on rhs is evaluated before the assignment operation

■ Examples:

$$
\begin{aligned}
& \mathrm{x}=2 \star 3.14 \\
& \mathrm{y}=1+\mathrm{x} \\
& \mathrm{z}=4^{\wedge} 2-\cos (\mathrm{y})
\end{aligned}
$$

■ Question: can we reverse the order of the 3 statements above?
■ NO! Any variable on the rhs must be initialized.

Matlab's built-in functions

- Expression on rhs is evaluated before the assignment operation
- Examples:
$x=2 * 3.14$
$y=1+x$
$z=4^{\wedge} 2-\cos (y)$
■ Question: can we reverse the order of the 3 statements above?
- NO! Any variable on the rhs must be initialized.

Matlab's built-in functions

- Expression on rhs is evaluated before the assignment operation
- Examples:
$x=2 * 3.14$
$y=1+x$
$z=4^{\wedge} 2-\cos (y)$
- Question: can we reverse the order of the 3 statements above?
- NO! Any variable on the rhs must be initialized.

Statements in a program are executed in sequence

$$
\begin{aligned}
& \% \text { A program fragment ... } \\
& x=2 * 3.14 \\
& y=1+x \\
& x=5 \\
& \% \text { What is } y \text { now? }
\end{aligned}
$$

```
A:6 B: 7.28 C: some other value
D: error
```

Script execution
(A script is a sequence of statements, an "m-file")

```
% Quad1
% Solves x^2 + 5x + 6 = 0
    a = 1;
    b = 5;
    c = 6;
    d = sqrt(b^2 - 4*a*c);
    r1 = (-b - d)/(2*a)
    r2 = (-b + d)/(2*a)
```

Memory space

b 5
c 6
d 1
r1 -3
r2 -2
\% Example 1_1: Surface area of a sphere
\% r: radius of the sphere [unit]
\% A: surface area of the sphere [unit^2]
r= input('Enter the radius: ') ;
A= 4*pi*r^2;
fprintf('Surface area is $\% f$ units^2!\n', A)

Input \& output

- variable = input ('prompt ') ;
- fprintf('message to print ')

Input \& output

- variable = input ('prompt ')

r= input('Enter radius: ')

- fprintf ('message to print ')
fprintf('Increase ')
fprintf('is $\% \mathrm{f}$ inches $\left.\backslash n^{\prime}, ~ x\right)$ fprintf('Position (\%d,\%d)\n', x, y)

Substitution sequences (conversion specifications)

$\%$ fixed point (or floating point)
\%d decimal-whole number
\%e exponential
\%g general—Matlab chooses a format
\%c character
\%s string

During discussion: Find out how to control the number of decimal places shown with $\% \mathrm{f}$
\% Example 1_1: Surface area of a sphere
\% r: radius of the sphere [unit]
\% A: surface area of the sphere [unit^2]

```
r= input('Enter the radius: ');
```

A= 4*pi*r^2;
fprintf('Surface area is \%f! \n', A)

$$
\begin{aligned}
& \text { Symbol to indicate that the rest } \\
& \text { of the line is a comment-not } \\
& \text { to be executed as code }
\end{aligned}
$$

Comments

- For readability!
- A comment starts with \% and goes to the end of the line
- Start each program (script) with a concise description of what it does
- Define each important variable/constant
- Units, assumptions/constraints
- Top a block of code for a specific task with a concise comment
- Comment: "What we are trying to do"
- Code: "How we are doing it"

Example

Modify the previous program to calculate the increase in surface area given an increase in the radius of a sphere.

Note: 1 mile = 5280 feet

```
% Example 1_2: Print surface area increase in
% miles^2 given an increase in the radius
r= input('Enter radius r in miles: ');
delta= input('Enter delta r in inches: ');
```


Tips for writing a program

- Check that you know what is given (or is input, or is assumed)
- Be goal-oriented: start by writing the last statement(s) for the program output
- What is the program supposed to produce? You know this from the problem statement
- Allows you to work backwards from the results
- Name as a variable what you don't know
- Helps you break down the steps
- Allows you to temporarily skip over any part that you don't know yet how to do

What's next?

- So far, all the statements in our scripts are executed in order
- We do not have a way to specify that some statements should be executed only under some condition
- We need a new language construct...

