Previous Lecture:
- Intro to the course
- "Computational senses"
- Running a program in Matlab

Today, Lecture 2:
- Anatomy of a program
- Variables, assignment, mathematical operations
- Functions for input & output
- Writing a program—systematic problem solving

Announcements:
- Set up folders (directories) on your laptop, flash drive, or cloud storage to store course files (see website announcement)
- Register your clicker or clicker app (see links in Syllabus)
- See website for office hours and consulting hours

Formula
- Surface area of a sphere? \(A = 4\pi r^2 \)
- Have the cosine of some angle \(\theta \) in \([0, \pi/2]\) and want \(\cos(\theta/2) \)?

\[
\cos(\theta/2) = \sqrt{\frac{1 + \cos(\theta)}{2}}
\]

Interactive computation in Command Window

```matlab
>> r = 6
r =
6
>> a = 4*pi*r^2
a =
452.3893
>> v = 4/3*pi*r^3
v =
904.7787
```
% Example 1_1: Surface area of a sphere
% r: radius of the sphere [unit]
% A: surface area of the sphere [unit^2]

r= input('Enter the radius: ');
A= 4*pi*r^2;
fprintf('Surface area is %f units^2\n', A)
Where does computation happen?

- Code lives on a disk (hard drive)
 - Matlab: Folder pane
- Variables live in memory (RAM)
 - Matlab: Workspace pane

Variable & assignment

- Variable: a named computer memory space for storing a value

 - r
 - A

- Valid names start with a letter, can contain digits
- Use meaningful variable names!
- Create a variable by assigning a value to it
- By default, a number has the type (class) **double**, for "double precision floating point number"
Variable & assignment

- Variable: a named space for storing a value
- Assignment: putting a value into a variable
- Assignment operator: =
- An assignment statement, e.g., \(r = 2 \times 4.5 \)
- Expression on right-hand-side (rhs) is evaluated before the assignment operation
- Update variable’s value with another assignment statement, e.g., \(r = 7 \)

Assignment

- Expression on rhs is evaluated before the assignment operation
- Examples:
 \[
 x = 2 \times 3.14 \\
 y = 1 + x \\
 z = 4^2 - \cos(y)
 \]

Question: can we reverse the order of the 3 statements above?
Assignment

- **Expression** on rhs is evaluated before the assignment operation
- Examples:
 - \(x = 2 \times 3.14 \)
 - \(y = 1 + x \)
 - \(z = 4^2 - \cos(y) \)
- Question: can we reverse the order of the 3 statements above?
- NO! Any variable on the rhs must be initialized.

Matlab’s built-in functions

- **Expression** on rhs is evaluated before the assignment operation
- Examples:
 - \(x = 2 \times 3.14 \)
 - \(y = 1 + x \)
 - \(z = 4^2 - \cos(y) \)
- Question: can we reverse the order of the 3 statements above?
- NO! Any variable on the rhs must be initialized.

Script execution

(A script is a sequence of statements, an "m-file")

```matlab
% Quad1
% Solves x^2 + 5x + 6 = 0
a = 1;
b = 5;c = 6;
d = sqrt(b^2 - 4*a*c);
r1 = (-b - d)/(2*a);
r2 = (-b + d)/(2*a)
```

Memory space
Script execution
(A script is a sequence of statements, an "m-file")

```matlab
% Quad1
% Solves x^2 + 5x + 6 = 0
a = 1;
b = 5;
c = 6;
d = sqrt(b^2 - 4*a*c);
r1 = (-b - d)/(2*a);
r2 = (-b + d)/(2*a)
```

Memory space

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

% Example 1_1: Surface area of a sphere
% r: radius of the sphere [unit]
% A: surface area of the sphere [unit^2]

```matlab
% Example 1_1: Surface area of a sphere
% r: radius of the sphere [unit]
% A: surface area of the sphere [unit^2]

r= input('Enter the radius: ');
A= 4*pi*r^2;
fprintf('Surface area is %f units^2!'n', A)
```

Input & output

- `variable = input('prompt ')`
- `fprintf('message to print ')`
Input & output

- `variable = input('prompt ')`
- `
r= input('Enter radius: ')

- `fprintf('message to print ')
 fprintf('Increase ')
 fprintf('is %f inches\n', x)
 fprintf('Position (%d,%d)\n', x, y)

Substitution sequences (conversion specifications)

- `%f` fixed point (or floating point)
- `%d` decimal—whole number
- `%e` exponential
- `%g` general—Matlab chooses a format
- `%c` character
- `%s` string

During discussion: Find out how to control the number of decimal places shown with `%f`

% Example 1_1: Surface area of a sphere
% r: radius of the sphere [unit]
% A: surface area of the sphere [unit^2]

```matlab
r= input('Enter the radius: ');
A= 4*pi*r^2;
fprintf('Surface area is %f\n', A)
```
Comments
- For readability!
- A comment starts with `%` and goes to the end of the line
- Start each program (script) with a concise description of what it does
- Define each important variable/constant
 - Units, assumptions/constraints
- Top a block of code for a specific task with a concise comment
 - Comment: “What we are trying to do”
 - Code: “How we are doing it”

Example
Modify the previous program to calculate the increase in surface area given an increase in the radius of a sphere.

Note: 1 mile = 5280 feet

```matlab
% Example 1_2: Print surface area increase in % miles^2 given an increase in the radius
r = input('Enter radius r in miles: ');
delta = input('Enter delta r in inches: ');
```

1 mile = 5280 feet
Tips for writing a program

- Check that you know what is given (or is input, or is assumed)
- Be goal-oriented: start by writing the last statement(s) for the program output
 - What is the program supposed to produce? You know this from the problem statement
 - Allows you to work backwards from the results
- Name as a variable what you don’t know
 - Helps you break down the steps
 - Allows you to temporarily skip over any part that you don’t know yet how to do

What’s next?

- So far, all the statements in our scripts are executed in order
- We do not have a way to specify that some statements should be executed only under some condition
- We need a new language construct...