
CS 1112 Spring 2020 Project 6, part B due Tue, May 12, at 11:00 PM EDT

Objectives

Completing part B of this project will reinforce your understanding of recursive functions while providing
another opportunity to explore interactive graphics in Matlab.

2 Drawing Bézier curves

Have you ever used a digital illustration tool like Inkscape or Adobe Illustrator, or drafted a technical
drawing in a CAD program? These tools produce images composed of mathematically-defined lines and
arcs, rather than using pixels like a digital camera or a painting program. The results are known as vector
graphics since they are composed of arbitrary (x, y) points rather than the regular rows and columns of
the raster images we worked with earlier. Even if you’ve never used any of these programs, you’ve already
created vector graphics by calling the plot() function in Matlab, which draws straight lines between
vectors of points.

Drawing straight lines is convenient, but many things in both art and engineering are curved. How can
we represent a smooth curve compactly in code, and how can we instruct a computer to draw them? The
most common representation is a cubic Bézier spline, where segments of the curve are defined using four
“control points.” The curve passes through the first and last points, while the second and third points set
its initial and final slope. Mathematically, the x and y coordinates of any point along the curve can be
calculated from a parametric cubic polynomial that depends on the control points (see part 2.4).

One way to plot the curve, then, is to sample the curve at a large number of parameter values (think
linspace()), then connect each of these samples with a line segment using plot(). But how many
samples should we choose? And wouldn’t this be wasteful if parts of the curve are very flat? Perhaps we
can adapt how many lines we draw based on how “curvy” the curve is in different places (see Insight §14.3).
Thinking recursively, given a curve, we could estimate how well-approximated it would be by a single line
connecting its endpoints. If the approximation is good, we draw that line; if not, we divide the curve in
half and ask the same question of each half. The trick is finding which control points to represent these
two half-curves. Thankfully, mathematician Paul de Casteljau found a geometric procedure for doing just
that.

b1

l2

b2
b3

r3

b4

m

l3

r2

n

Figure adapted from Fischer 2000

Given control points b1, b2, b3, and b4 (each of which has an
x and y coordinate), consider the lines connecting each pair of
adjacent points. Let l2 be the midpoint of the line connecting
b1 and b2, let m be the midpoint of the line connecting b2 and
b3, and let r3 be the midpoint of the line connecting b3 and b4.
Next consider the lines connecting those midpoints: let l3 be
the midpoint of the line connecting l2 and m and let r2 be the
midpoint of the line connecting m and r3. Finally, consider
the line connecting l3 and r2; we’ll name its midpoint n (see
figure).

It turns out that the sequence {b1, l2, l3, n} is the set of
control points for the first half of the curve, while the se-
quence {n, r2, r3, b4} is the set of control points for the sec-
ond half of the curve. Implementing this geometric construc-
tion in code enables us to divide our problem into two smaller
subproblems—one of the key ingredients for recursion.

1



The second ingredient is identifying the base case; that is, knowing when to stop subdividing the curve.
It should be safe to replace the curve with a straight line if the maximum distance between the curve and
that line would be smaller than some threshold. To estimate this distance, we’ll use a formula described
by Roger Willcocks (author of the RoPS software). Define the points u and v as follows:

u = 3b2 − 2b1 − b4

v = 3b3 − b1 − 2b4

(these are vector equations, meaning they apply separately to both the x and y coordinates of each point).
Then the maximum distance d between the curve and the line is bounded by

d ≤ 1
4

√
max(u2

x, v2
x) + max(u2

y, v2
y)

So, if the value of the above expression is less than our threshold, we can draw a line between our endpoints.
Otherwise, we should keep subdividing.

2.1 de Casteljau algorithm

Implement the above algorithm for drawing a cubic Bézier curve using straight lines. Your function
deCasteljau.m should take the 4 control points as inputs (each point represented by a vector of length
2), as well as the desired tolerance (maximum distance between linear approximation and true curve).
In addition to drawing the curve (using plot() to draw black line segments), it should return the total
number of line segments used. The following function header is provided on the course website for your
convenience (ignore the comments about animating control points until the next section):

function segments = deCasteljau (b1 , b2 , b3 , b4 , tol)
% Plot 2D Bezier curve recursively .
% b1 , b2 , b3 , and b4 are the control points for the curve (length -2 row
% vectors in [x, y] order ). Assumes figure hold is on. Recursively
% subdivides curve at parameter midpoint until max distance from a line
% drawn between endpoints is below `tol `. Returns the number of line
% segments used to draw the curve.
% In addition , animate control points while error is above 10* tol to
% visualize the algorithm .

2.2 Interactive testing

In order to test this algorithm, we need to specify the coordinates of four control points. This is tedious
and unintuitive to do numerically, so let’s develop a visual, interactive procedure for defining the points.
Write a script BezierDemo.m to perform the following tasks:

• Open a new figure window

• Set the x and y axis scaling to be equal (since we’re dealing with graphics). Set axis bounds to show
a rectangle approximately 2.8 units wide by 2 units tall (this nicely fills the default figure size)

• Prompt the user in the plot title to select 4 points. Accept their clicks and draw a circle marker at
each point that they click.

• Set hold on and invoke your deCasteljau() function with the user-selected points as the control
points and with a tolerance of 0.005.

When you run the script, hopefully you see a smooth curve connecting the first and last points that you
click while bending in the direction of the middle two points. If not, don’t despair; the next part may help
you to visually debug what is going wrong.

2



2.3 Visualization

With such a geometric algorithm, it would be nice to visualize the steps it takes at each level. Not only will
this improve your intuition for recursive behavior, it’s a good way to check for bugs in your implementation.
Make the following two changes to your deCasteljau() function:

1. Before subdividing the curve, check if d is larger than 10*tol. If so, then plot the four control points
as boxes (symbol code ’s’) connected by lines.

2. At the end of the function, pause for 0.1 seconds. This will animate the curve as it is drawn.

Try out these new features using your test script and watch recursion in action!

2.4 Compare to samples

We mentioned that there is a parametric formula for directly computing the coordinates of any point along
the curve. Given a parameter t between 0 (corresponding to the start of the curve) and 1 (corresponding
to the end of the curve), the coordinates of this parametric curve, denoted b(t), are given by

b(t) = (1− t)3b1 + 3(1− t)2tb2 + 3(1− t)t2b3 + t3b4

where bi are the control points (again, this is a vector formula that applies separately to the x and y
components of each point). Let’s compare the results of our recursive solution to a sample-based approach
using the same number of line segments. Make the following additions to BezierDemo.m:

• When you call deCasteljau(), save the number of line segments it used in a variable s. Construct
an array t containing s+1 points equally spaced between 0 and 1 (inclusive)

• Construct arrays x and y by evaluating the above formula at each value in t

• Open a new figure window with the same axes as before and plot line segments connecting the points
in x and y. Ensure that your two figures are distinguished by their titles

Try out your script for several different choices of control points. The curves should look nearly identical
in both windows, so this is a good way to cross-check your work. For simple curves it will be hard to see a
quality difference, but remember: without recursion, we wouldn’t have known how many points to sample.

Submission

Submit your files deCasteljau.m and BezierDemo.m CMS (after registering your group), along with your
submissions for Part A.

3


	Drawing Bézier curves
	de Casteljau algorithm
	Interactive testing
	Visualization
	Compare to samples


