
CS 1112 Spring 2020 Project 4 Part B due Monday, April 13, 11pm EDT

Objectives

Completing Part B of this project will solidify your skills in reading image files into arrays and working
with the uint8 data type.

2 Enhance!

You will write a function multiZoom() that allows a user to display an image file and select multiple
areas to “ehnahce” by zooming in. The function should take a single argument: the name of the image file.
When invoked, it will first show the image in a figure window, and then the user will be asked to select an
area of interest. This region will be magnified and plotted in a new figure window. The user may repeat
this interaction by selecting multiple regions on the original figure until they indicate that they are done
(by selecting a small region). At this point the function should return an array containing the magnified
image data for the last enhanced region.

More detailed requirements, along with some implementation tips, are outlined below:

• Your function should work for color (8 bits per channel) PNG and JPEG images, both of which are
supported by MATLAB’s imread() function. The returned data should be a uint8 array.

• Images and enhancements should be displayed “right-side-up;” this is done automatically when using
the imshow() function. But note that doing so flips the y-axis from what we’re used to: the top of
the figure will have a y-coordinate of 1, while the bottom will have a larger positive y-coordinate.
This is because the y-coordinate corresponds to the row index of the image array, and we number
rows from top to bottom.
You should also keep in mind that the conventional order of coordinates differs between plots and
arrays: a point (x, y) specifies the horizontal (x) position before the vertical one, but a matrix index
(r,c) specifies the vertical (row) position first. Make good choices of variable names to avoid mixing
these conventions up!

• The user will select a region of interest by clicking on two different points in the image, which should
be interpreted as two opposite corners of a rectangle. The statement [xvec, yvec] = ginput(n)
accepts n user mouse clicks in the current figure window and returns the x and y coordinates of the
clicks in the vectors xvec and yvec (both of which have length n). So (xvec(1),yvec(1)) are the
coordinates of the first click, etc. Again, x corresponds to the column number of the corresponding
location in the array, while y corresponds to the row.

• The coordinates of the clicked points need to be processed in order to derive a rectangular region of
pixels in the array. In particular,

– Coordinates might not be integers (this happens for various technical reasons depending on the
resolution of the user’s monitor). They should therefore be rounded to integers before trying to
interpret them as row and column indices.

– Coordinates outside of the image bounds should be “clamped” to the boundary of the image
(i.e., if the user clicks at an x-coordinate of −2, the closest pixel in the image would have a
column number of 1).

– The user may select the two corners of their rectangle in any order (e.g. top-left, then bottom-
right, or perhaps bottom-left, then top-right). You should be able to construct a valid subarray
regardless of their choice.

1



• The selected region should be magnified ∼ 2× in width and height using the 2D interpolation de-
scribed in Exercise 9: add one pixel in between each pair of neighboring pixels and set its value equal
to the average of the neighboring values. Perform the interpolation on the red, green, and blue layers
separately. Be careful with types! Exercise 9 used double, but image data is input and output as
uint8 (potentially making your interpolation susceptible to saturation error).

• Since we want to return to the original image after displaying a zoom detail, we need to be able to
identify the window that shows the original image. Use the figure command: figure(k) creates a
figure window and numbers it k where k is a positive integer, or if a figure window k already exists
then that window is made active—shown on top of other windows. The command figure on its own
starts a new figure window and steps up the figure window counter. Therefore, before displaying the
original image, use the command figure(1). Then the subsequent display of a zoom detail can be
coded like this:

figure % start new figure window
imshow(newIm) % newIm is the uint8 array containing the data of the zoom detail
title(’Detail of selected area’)
pause(2)
figure(1) % bring figure 1 forward, i.e., make it the active figure

The pause command is used so that the user can see the zoom detail for a moment before the original
image (in figure window 1) is brought forward. Note that you don’t lose the window holding the
zoom detail—it is simply behind the active figure window. Start function multiZoom() with the
command close all which closes all figure windows.

• If the selected region is fewer than 4 pixels tall or fewer than 4 pixels wide, that indicates that the
user is done interacting with the program. This small region should not be enhanced; instead, the
previous enhanced data should be returned. If no data was previously enhanced (this was the user’s
first selection), then an empty uint8 array (constructed with uint8([])) should be returned.

• Use the title command appropriately to give instructions to the user on the figure window (e.g.
“Make two clicks to select a rectangular area”, “Goodbye”, etc.)

• There are a number of opportunities for breaking down this problem into subtasks. Try to design
and use at least one subfunction.

Note that you will have to write your own function header for multiZoom(); be sure to clearly document its
inputs, arguments, and behavior. Test your function by running it on the provided image (“zoomMe.jpg”),
or on one of your own. You should confirm that both the side effects (the interactive behavior) and the
return value of the function are consistent with the specifications.

Submission

Submit your file multiZoom.m on CMS, along with the files for Part A.

2


	Enhance!

