
CS 1112 Spring 2020 Project 4 Part A due Monday, April 13, 11pm EDT

You must work either on your own or with one partner. If you work with a partner you must first
register as a group in CMS and then submit your work as a group. Adhere to the Code of Academic
Integrity. For a group, “you” below refers to “your group.” You may discuss background issues and
general strategies with others and seek help from the course staff, but the work that you submit must
be your own. In particular, you may discuss general ideas with others but you may not work out the
detailed solutions with others. It is not OK for you to see or hear another student’s code and it is
certainly not OK to copy code from another person or from published/Internet sources. If you feel that
you cannot complete the assignment on you own, seek help from the course staff.

Objectives

Completing Part A of this project will help you learn about 2-dimensional arrays (matrices) and how they
typically interact with 1-dimensional arrays (vectors). Other themes include RGB computation and the
use of subfunctions.

1 Color circles

The display of color spectra is discussed in §4.2 in Insight. Color circles are another approach for commu-
nicating the range of RGB (red-green-blue) possibilities:

This project is about computing and displaying color circles.

We can approximate a color circle as a collection of trapezoidal tiles, each of which is colored according to a
rule. Tiles can be organized into sectors and rings; here is an example in which nrings = 6 and nsectors = 18:

(r,s) = (6,1)

(r,s) = (6,18)

(r,s) = (2,11)

(r,s) = (4,7)

1



The notation (2, 11) refers to the tile that is in ring 2 and sector 11. To specify the location of tile
(r, s) it helps to define two key parameters: the sector angle ∆sectors = 2π/nsectors and the ring width
∆rings = 1/nrings. Tile (r, s) then has its two “inner” vertices on a circle with radius (r − 1)∆rings and its
two “outer” vertices on a circle with radius r∆rings (we are centering the color circle at (0, 0)). Notice that
the tiles in ring 1 are degenerate trapezoids (a.k.a. triangles) because the inner radius is zero. The two
polar angles associated with tile (r, s) are (s− 1)∆sectors and s∆sectors.

A handy way to encode the RGB values of the colors that show up in the circle is to have a triplet of
matrices R, G, and B, each of which is nrings-by-nsectors in dimension. Our convention throughout is to
house the red, green, and blue values for radial tile (r, s) in R(r,s), G(r,s), and B(r,s) respectively.

1.1 Displaying a color circle

Complete the following function so that it performs as specified:
function drawColorCircle (R,G,B)
% Draw a color circle in the current figure window given matrices R, G,
% and B. Assumes that the hold toggle is on.
% R, G, and B are matrices of the same size storing the red , green , and
% blue values , respectively , of the tiles in the color circle . The
% number of rows is the number of rings in the color circle ; the number
% of columns is the number of sectors in the color circle .

For full credit, your implementation of drawColorCircle() must include and make effective use of a
subfunction drawTile() that draws a single tile. You are free to design this subfunction any way you
want. Be sure to document your subfunction appropriately.
To actually draw a tile, you should use the fill() function. The command fill(x,y,c) colors the
polygon defined by vectors x and y in a color specified by the RGB 3-vector c. The polygon will have
vertices at (x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n)) where n is the length of the vector x (and y).
Unlike plot(), the last point will automatically be connected to the first. To “turn off” the black border
that is drawn by default, use the additional arguments ’LineStyle’, ’none’, like this:
fill(x, y, c, ’LineStyle’, ’none’)

An example script showDrawColorCircle that calls your function to draw a “color circle” with random
colors is available on the website for your convenience.

1.2 Shifting a color circle

We can produce spirals by systematically rotating the rings of a color circle:

For the spiral on the left, we start with the “aligned” color circle displayed on page 1 in which nrings = 6
and nsectors = 18. We then rotate its rings as follows:

2



Ring Action
6 rotated 0 sectors counter-clockwise
5 rotated 1 sectors counter-clockwise
4 rotated 2 sectors counter-clockwise
3 rotated 3 sectors counter-clockwise
2 rotated 4 sectors counter-clockwise
1 rotated 5 sectors counter-clockwise

Instead of these single-sector “offsets,” we could have rotated the rings by other amounts. Sticking with
the same example, if p is a nonnegative integer, then here is how we would generate a color circle with
offset p:

Ring Action
6 rotated 0*p sectors counter-clockwise
5 rotated 1*p sectors counter-clockwise
4 rotated 2*p sectors counter-clockwise
3 rotated 3*p sectors counter-clockwise
2 rotated 4*p sectors counter-clockwise
1 rotated 5*p sectors counter-clockwise

For your information, the above spiral on the right has nrings = 20, nsectors = 120, and offset p = 5.

If R, G, and B are matrices that define the red, green, and blue values of an aligned color circle, then by
shifting their rows we can obtain a new triplet of matrices R̃, G̃, and B̃ that define a spiral. Here is an
illustration of how get R̃ from R in the case nrings = 5, nsectors = 8, and p = 3:

R =

R(1, 1) R(1, 2) R(1, 3) R(1, 4) R(1, 5) R(1, 6) R(1, 7) R(1, 8)
R(2, 1) R(2, 2) R(2, 3) R(2, 4) R(2, 5) R(2, 6) R(2, 7) R(2, 8)
R(3, 1) R(3, 2) R(3, 3) R(3, 4) R(3, 5) R(3, 6) R(3, 7) R(3, 8)
R(4, 1) R(4, 2) R(4, 3) R(4, 4) R(4, 5) R(4, 6) R(4, 7) R(4, 8)
R(5, 1) R(5, 2) R(5, 3) R(5, 4) R(5, 5) R(5, 6) R(5, 7) R(5, 8)

← ring 1
← ring 2
← ring 3
← ring 4
← ring 5

R̃ =

R(1, 5) R(1, 6) R(1, 7) R(1, 8) R(1, 1) R(1, 2) R(1, 3) R(1, 4)
R(2, 8) R(2, 1) R(2, 2) R(2, 3) R(2, 4) R(2, 5) R(2, 6) R(2, 7)
R(3, 3) R(3, 4) R(3, 5) R(3, 6) R(3, 7) R(3, 8) R(3, 1) R(3, 2)
R(4, 6) R(4, 7) R(4, 8) R(4, 1) R(4, 2) R(4, 3) R(4, 4) R(4, 5)
R(5, 1) R(5, 2) R(5, 3) R(5, 4) R(5, 5) R(5, 6) R(5, 7) R(5, 8)

← ring 1
← ring 2
← ring 3
← ring 4
← ring 5

In this example,

You get R̃(1, :) by right-shifting R(1, :) 12 components.
You get R̃(2, :) by right-shifting R(2, :) 9 components.
You get R̃(3, :) by right-shifting R(3, :) 6 components.
You get R̃(4, :) by right-shifting R(4, :) 3 components.
You get R̃(5, :) by right-shifting R(5, :) 0 components.

The matrices G̃ and B̃ are computed similarly. Complete the following function so that it performs as
specified.

3



function [Rtilde ,Gtilde , Btilde ] = makeSpiral (R,G,B,p)
% R, G, and B are matrices of the same size that define a color circle .
% p is a nonnegative integer .
% Rtilde , Gtilde , and Btilde are matrices of the same size that define a
% new color circle that is the given color circle with offset p.

Your implementation must include and make effective use of a subfunction v = shift(u,q) that takes a
row vector u and shifts its component values right by the amount specified by q (a nonnegative integer).
Thus,

v = shift([10 20 30 40 50],3)

should give v = [30 40 50 10 20]. Below we introduce “modular arithmetic” and the built-in function
mod, which will be useful for “shifting” the components in a vector.

An example script showMakeSpiral is available on the course website for calling your function makeSpiral(),
again with random colors, to help you check your functionality so far.

1.2.1 Modular arithmetic

Modular Arithmetic describes a system of arithmetic for integers that “wrap around,” the most familiar of
which is probably the 12-hour clock. In the 12-hour clock system, there’s no 13 o’clock or higher because
the value “wraps around” at 12 and starts over at 1. 10 o’clock + 5 hours gives 3 o’clock, not 15. Arithmetic
on the 12-hour clock is therefore modulo 12, commonly read as mod 12. Notice that 12 is congruent not
only to 12 but also to 0.

To compute 10 + 5 modulo 12, we can use the built-in function mod(): mod(10+5, 12) returns 3. Given
positive integers a and b, mod(a,b) always returns an integer in [0..b-1] .1 In your computation, beware
of 0 if you’re dealing with vector indices! Although modular arithmetic is defined for integers, mod() does
work with non-integer arguments.

1.3 Making a color circle

We now turn our attention to the production of the matrices R, G, and B that collectively define the RGB
values assigned to each radial tile. We illustrate the main ideas with the example nrings = 6, nsectors = 18.
The first step is to determine the RGB values of the tiles that are on the “rim” of the circle:

Notice how the colors transition from red (s = 1) to yellow (s = 4) to green (s = 7) to cyan (s = 10) to
blue (s = 13) to magenta (s = 16) and on back to red (s = 1) as we travel counterclockwise around the

1Notice any similarity between rem() and mod()? In fact, when the arguments are positive values there’s no difference
between rem() and mod(). Read MATLAB documentation on those two functions if you want to learn more.

4



rim. The actual RGB values are determined by carefully sampling a function f that we shall refer to as
the rim function. The rim function f is defined on the interval [0, 6] as follows:

f(t) =


0 if 0 ≤ t ≤ 2
t− 2 if 2 ≤ t ≤ 3
1 if 3 ≤ t ≤ 5
6− t if 5 ≤ t ≤ 6

.

−1 0 1 2 3 4 5 6 7

0

0.5

1

f(mod(t+4,6))

−1 0 1 2 3 4 5 6 7

0

0.5

1

f(mod(t+2,6))

−1 0 1 2 3 4 5 6 7

0

0.5

1

f(t)

Sector red green blue

1 1.00 0.00 0.00
2 1.00 0.33 0.00

3 1.00 0.67 0.00
4 1.00 1.00 0.00
5 0.67 1.00 0.00
6 0.33 1.00 0.00
7 0.00 1.00 0.00
8 0.00 1.00 0.33
9 0.00 1.00 0.67
10 0.00 1.00 1.00
11 0.00 0.67 1.00
12 0.00 0.33 1.00
13 0.00 0.00 1.00
14 0.33 0.00 1.00
15 0.67 0.00 1.00
16 1.00 0.00 1.00
17 1.00 0.00 0.67
18 1.00 0.00 0.33

From the above plots and table we see that the blue values for the 18 rim tiles are obtained by evaluating
f at 18 equally spaced points, including 0 but not 6. Similarly, the green values are obtained by sampling
f(mod(t+ 2, 6)) while the red values are computed by sampling f(mod(t+ 4, 6)).
Once the color of a rim tile is known, then we can compute the color of the other tiles in its sector by using
the following “darkening” rule:

If c is the RGB vector that defines the color of the rim tile in sector s, then the color
of tile (r, s) is given by rho*c where the value of rho is sin((r/nrings)(π/2))

Notice that the value of sin((r/nrings)(π/2)) decreases as the ring index r decreases forcing the tiles to get
darker as we move towards the center of the circle.

Now that we have described how the rim tiles and interior tiles are colored, it is possible for you to complete
the following function so that it performs as specified:

function [R,G,B] = makeColorCircle (nRings , nSectors )
% nRings is a positive integer
% nSectors is a positive integer >= 3.
% R, G, and B are matrices with nRings rows and nSectors columns
% that define a color circle that has nRings rings and nSectors
% sectors . The rgb color of radial tile (r,s) is given by
% R(r,s), G(r,s), and B(r,s).

5



Include a subfuction to return the value of the rim function described above given t.

An example script showMakeColorCircle is available on the course website for calling your function
makeColorCircle(). Play with the parameters in showMakeColorCircle to create different spirals!

Submission

Submit your files drawColorCircle.m, makeSpiral.m, and makeColorCircle.m on CMS.

Part B will appear in a separate document. Parts A and B have the same due date.

6


	Color circles
	Displaying a color circle
	Shifting a color circle
	Modular arithmetic

	Making a color circle


