\qquad NetID: \qquad
You have until Sunday, 3/8, at 9pm to complete this exercise and get it checked off (during this discussion section or during consulting hours or TAs' office hours).

1 Different ways to create vectors

For each statement below, write the resulting vectors (and answer the questions) on the blanks.

```
a= zeros(1,4) %___-_-_-_-_-_-_-_
b= zeros(4,1) %_______________ What do the arguments specify?
```



```
c= ones(1,3)
    %__-_-_-_-_-_-_-_--
f= 10:-1:17
    %_------------_---
g= linspace(10,19,4)%
                            %_-_-_--_-_-_----
k= [llo 20 40] %
                                    What does the space separator do?
                                    _-_-_-_-_-_-_-_-_-_-_-
n= [10;20;40]
                            %
                                What does the semi-colon separator do?
                                ___-_-_-_-_-_-_---
p= [a k] %__-_-_-_-_-_-_-_
q= [b; n]
    %_
    %_-_-------------
s= b' %_----------------
                                This operation is called "transpose"
t=[[a b
                            %_-_--------------
```


2 Roll multiple dice

Review the function rollDie (from Lecture 11; see back), which simulates the rolling of one fair six-sided die. Then write a function rollDice (n, d) to simulate the rolling of d six-sided dice n times and draw the resulting histogram. We define the outcome of rolling d dice once to be the sum of the faces that show up. The function returns the vector count, where count (c) is the number of times that outcome c has occurred. For extra practice with the accumulation pattern, do not use built-in function sum. Your function draws a histogram of the result. Below is an example histogram for small n . What shape do you expect to see for large n ?


```
function count = rollDie(rolls)
% Simulate rolling a fair 6-sided die and draw histogram of outcomes
% `rolls` is the number of times to roll the die
% count` is a vector of how many times each outcome occurs
% `count(f)` is the number of times face `f` occurs
FACES= 6; % number of faces on die
count= zeros(1,FACES); % bins to store counts
% Count outcomes of rolling a FAIR die
for k = 1:rolls
    % roll the die
    face= ceil(rand()*FACES);
    % increment appropriate bin
    count(face)= count(face) + 1;
end
% Show histogram of outcome
bar(1:FACES, count)
title(sprintf('Outcomes from %d rolls of a fair die', rolls), 'Fontsize',14)
xlabel('Outcome', 'Fontsize',14)
ylabel('Count', 'Fontsize',14)
```



```
function count = rollDice(n,d)
```

function count = rollDice(n,d)
% Simulate rolling `d` dice `n` times (trials) and draw histogram of outcomes
% Simulate rolling `d` dice `n` times (trials) and draw histogram of outcomes
% Rolls all `d` dice in each trial; the outcome is the sum of their faces.
% Rolls all `d` dice in each trial; the outcome is the sum of their faces.
% `count` is a vector of the number of times each outcome occurs, i.e.,
% `count` is a vector of the number of times each outcome occurs, i.e.,
% 'count(t)`is the number of times outcome`t` occurs % 'count(t)` is the number of times outcome `t` occurs
FACES= 6; % six-sided dice
FACES= 6; % six-sided dice
maxOut= FACES*d; % highest possible outcome from rolling all dice
maxOut= FACES*d; % highest possible outcome from rolling all dice
count= zeros(1,maxOut); % bins to store counts
count= zeros(1,maxOut); % bins to store counts
% `count(c)` is the number of occurrences of outcome `c`

```
    % `count(c)` is the number of occurrences of outcome `c`
```

