1 Different ways to create vectors

For each statement below, write the resulting vectors (and answer the questions) on the blanks.

\[a = \text{zeros}(1,4) \] % ________________

\[b = \text{zeros}(4,1) \] % ________________ What do the arguments specify? ________________

\[c = \text{ones}(1,3) \] % ________________

\[f = 10:-1:17 \] % ________________

\[g = \text{linspace}(10,19,4) \] % ________________

\[k = [10 20 40] \] % ________________ What does the space separator do? ________________

\[n = [10;20;40] \] % ________________ What does the semi-colon separator do? ________________

\[p = [a \ k] \] % ________________

\[q = [b; \ n] \] % ________________

\[s = b' \] % ________________ This operation is called "transpose"

\[t = [a \ b'] \] % ________________

2 Roll multiple dice

Review the function `rollDie` (from Lecture 11; see back), which simulates the rolling of one fair six-sided die. Then write a function `rollDice(n,d)` to simulate the rolling of \(d \) six-sided dice \(n \) times and draw the resulting histogram. We define the outcome of rolling \(d \) dice once to be the sum of the faces that show up. The function returns the vector `count`, where \(\text{count}(c) \) is the number of times that outcome \(c \) has occurred. For extra practice with the accumulation pattern, do not use built-in function `sum`. Your function draws a histogram of the result. Below is an example histogram for small \(n \). What shape do you expect to see for large \(n \)?
function count = rollDie(rolls)
% Simulate rolling a fair 6-sided die and draw histogram of outcomes
% `rolls` is the number of times to roll the die
% `count` is a vector of how many times each outcome occurs
% `count(f)` is the number of times face `f` occurs

FACES = 6; % number of faces on die
count = zeros(1,FACES); % bins to store counts

% Count outcomes of rolling a FAIR die
for k = 1:rolls
 % roll the die
 face = ceil(rand() * FACES);
 % increment appropriate bin
 count(face) = count(face) + 1;
end

% Show histogram of outcome
bar(1:FACES, count)
title(sprintf('Outcomes from %d rolls of a fair die', rolls), 'Fontsize',14)
xlabel('Outcome', 'Fontsize',14)
ylabel('Count', 'Fontsize',14)

function count = rollDice(n,d)
% Simulate rolling `d` dice `n` times (trials) and draw histogram of outcomes
% Rolls all `d` dice in each trial; the outcome is the sum of their faces.
% `count` is a vector of the number of times each outcome occurs, i.e.,
% `count(t)` is the number of times outcome `t` occurs

FACES = 6; % six-sided dice
maxOut = FACES*d; % highest possible outcome from rolling all dice
count = zeros(1,maxOut); % bins to store counts
% `count(c)` is the number of occurrences of outcome `c`