
CS1112 Exercise 3 Name: NetID:

When you have completed the exercise, show this sheet and any associated programs to your
discussion instructor, who will record that you have completed the work. If you do not finish
this exercise in class, you have until Sunday, 2/9, at 9pm to get your exercise checked off during
consulting hours or during TAs’ office hours.

1 Multiples of k

The following program reads an integer k and outputs all positive multiples of k up to 1000.
Fill in the blank.

k = input(’Please enter a positive integer smaller than 1000: ’);

for j = ______________________

fprintf(’%d ’, j)

end

fprintf(’\n’)

2 Approximate square root (again!)

The square root of a positive value A can be computed by building “increasingly square” rect-
angles with area A. Write a script to solicit a positive value A and an a positive integer N .
Then compute

√
A by building N increasingly square rectangles. Let the first rectangle have

length A and width 1. The final square root value is the average of the length and width of the
Nth rectangle.

Do not use arrays, i.e., you will use scalar variables L and W for the length and width of a
rectangle, respectively.

3 Approximate π

[Modified from Insight Exercise P2.1.5] For large n,

Tn = 1 + 1
22 + · · ·+ 1

n2 =
n∑

k=1

1

k2
≈ π2

6

Rn = 1− 1
3 + · · ·+ (−1)n+1

2n− 1 =
n∑

k=1

(−1)k+1

2k − 1
≈ π

4

giving two different ways to estimate π:

τn =
√

6Tn

ρn = 4Rn

Write a script that displays the value of |π − ρn| and |π − τn| for n = 100, 200, . . . , 1000 in one
table. Do not use arrays.

1

Review last week’s exercise (Read this at home, not for discussion section)

This is a reminder about certain nice properties of if-statements and how to cut down on
superfluous code. You worked on this last week. Suppose you have a nonnegative ray angle A
in degrees. The following code determines in which quadrant A lies:

A = input(’Input ray angle: ’);

A = rem(A, 360); %Given nonnegative A, result will be in the interval [0,360)

if (A < 90)

quadrant= 1;

elseif (A < 180)

quadrant= 2;

elseif (A < 270)

quadrant= 3;

else

quadrant= 4;

end

fprintf(’Ray angle %f lies in quadrant %d\n’, A, quadrant)

Notice that in the second condition (boolean expression) above, it is not necessary to check
for A>=90 in addition to A<180 because the second condition, in the elseif branch, is executed
only if the first condition evaluates to false. That means that by the time execution gets to the
second condition, it already knows that A is ≥ 90 so writing the compound conditional A>=90
&& A<180 as the second condition would be redundant. Similarly, the concise way to write the
third condition is to write only A<270 as above—unnecessary to write the compound condition
A>=180 && A<270. This is the nice (efficient) feature of “cascading” and “nesting.” If I do
not cascade or nest, but instead use independent if-statements, then I must use compound
conditions in some cases, as shown in the fragment below:

A= rem(A, 360); %Given nonnegative A, result will be in the interval [0,360)

if (A < 90)

quadrant= 1;

end

if (A >=90 && A < 180)

quadrant= 2;

end

if (A >=180 && A < 270)

quadrant= 3;

end

if (A >=270)

quadrant= 4;

end

2

