\qquad NetID: \qquad

Complete this exercise and submit your code to CMS by Sunday, 5/10, at $9 p m$ EDT. At the top of your submitted files, add comments to answer each of the boxed questions on this worksheet.

1. Efficient calculation of x^{n} where n is large

If you cannot use MATLAB's power operator ^ how would you calculate x to the n-th power? One way is to use iteration-a loop that executes $n-1$ times. Another strategy is recursion-repeated squaring in this case. The idea is illustrated with the following schematic that shows how to compute x^{21} :

$$
\begin{aligned}
& x^{21}=\left(x^{10}\right)^{2} \cdot x \\
& \longrightarrow x^{10}=\left(x^{5}\right)^{2} \\
& \longrightarrow x^{5}=\left(x^{2}\right)^{2} \cdot x \\
& \longrightarrow x^{2}=(x)^{2}
\end{aligned}
$$

The recursive definition behind the scenes is given by

$$
f(x, n)= \begin{cases}1 & \text { if } n=0 \\ f(x, n / 2) \cdot f(x, n / 2) & \text { if } n>0 \text { and } n \text { is even } \\ f(x,(n-1) / 2) \cdot f(x,(n-1) / 2) \cdot x & \text { if } n>0 \text { and } n \text { is odd }\end{cases}
$$

Write the following function based on the recursive strategy. Do not use loops.

```
function y = Power(x, n)
% y = x^n where n is an integer >=0
% Use recursion. No loops or the ^ operator.
```

How many times will your function Power() be called in total if you evaluate the expression Power $(2,5)$?

Check your answer by adding the statement disp('Pow!') as the first line of your function. If you see "Pow!" printed more than 5 times, how could you modify your code to reduce the number of recursive calls? (still without using loops or ${ }^{`}$)

2 Writing efficient code

1. Download the script LargestTriangle from the Exercises page. The script (also shown below) is a first attempt at finding the largest triangle that can be formed from n points on a unit circle. Add code (tic, toc) to the script to determine how long it takes to find the answer for $n=100,150,200$. Store the results (time) in vector t1 such that t1 (i) corresponds to $n(i), i=1,2,3$. Print the values in t 1 .
```
for n=100:50:200
    theta = rand(n,1)*2*pi; % Angle of n random pts on the unit circle
    % Compute the area of the largest triangle that can be formed by 3 of the n points
    A = 0; % max area so far
    for i=1:n
        for j=1:n
            for k=1:n
                % Triangle with vertices at points i,j,k. Calculate Cartesian coordinates
                ci = cos(theta(i)); si = sin(theta(i));
                cj = cos(theta(j)); sj = sin(theta(j));
                ck = cos(theta(k)); sk = sin(theta(k));
                % Calculate area using Heron's Formula
                dij = sqrt((ci-cj)^2 + (si-sj)^2); % distance btw points i,j
                dik = sqrt((ci-ck)^2 + (si-sk)^2); % distance btw points i,k
                djk = sqrt((cj-ck)^2 + (sj-sk)^2); % distance btw points j,k
                s = (dij+dik+djk)/2; Aijk = sqrt((s-dij)*(s-dik)*(s-djk)*s);
                A = max (A, Aijk);
            end
        end
    end
end
```

2. We now start to make the computation more efficient. Append the script rather than modify directly-copy and paste your code from Part 1 to Part 2 of the script and make the modification in Part 2.

Notice that there are several levels of inefficiency. The area for each combination of i, j, k is computed 6 times.

- Improvement 1: Modify the loop ranges to eliminate duplicate and improper combinations (e.g., $(1,3,2)$ is a duplicate of $(1,2,3) ;(1,1,2)$ is not a proper combination for forming a triangle.)
- Also, there are a lot of redundant sine and cosine evaluations. Improvement 2: Address this issue by moving the ci, si, cj and sj assignments.
Store the time taken to do the computation in vector t 2 such that t 2 (i) corresponds to $n(i)$. Print the values in t2. How much speed-up did you get?

3. Copy your code from Part 2 to Part 3. Make modifications in Part 3.

- Even with the change in where we compute ci, si, cj and sj as done in Part 2, we are still doing more sine and cosine evaluations than necessary - given n values of theta we should only need to make n sine evaluations and n cosine evaluations. This suggests that we can reduce the time further by precomputing the sine and cosine of theta. Improvement $3 a$: Compute and store the n sine values in a vector; compute and store the n cosine values in a vector. You will use these later.
- There is a similar redundancy associated with the repeated side length computations a, b, and c . Improvement 3b: Eliminate this redundancy by precomputing an $n \times n$ array D with the property that $\mathrm{D}(\mathrm{i}, \mathrm{j})$ is the distance from point $(\cos (\operatorname{theta}(\mathrm{i}))$, $\sin (\operatorname{theta}(\mathrm{i})))$ to point $(\cos (\operatorname{theta}(\mathrm{j}))$, $\sin (\operatorname{theta}(\mathrm{j})))$. Note that you only need to compute "half" of D since $\mathrm{D}(\mathrm{i}, \mathrm{j})$ equals $\mathrm{D}(\mathrm{j}, \mathrm{i})$. Be sure to use the precomputed sine and cosine values instead of making new calls to the functions sin and cos.

Improvement 3c: Update the remaining code to use the precomputed distances instead of making extra side length calculations. Store the time taken to do the computation in vector t 3 such that t 3 (i) corresponds to $n(i)$.
4. Plot the computation time: draw three curves of time vs. n on one set of axes with a legend to identify the curves. (Read Matlab documentation!) Also show in a table (just use fprintf) the ratio of t1 to t3 for all n.
5. What is the expected computation time for the three methods for $n=1000$?

Final note. The speed-up that we get isn't all "free." The speed-up gained from precomputation has a cost in computer memory -from version 1 to version 3, the major memory requirement increases from n (length of theta) to n^{2} (size of D). The problem at hand, the language, and the hardware are all considerations in the trade-off between speed and memory.

