
CS1112 Exercise 13 Name: NetID:

Complete this exercise and submit your code to CMS by Sunday, 5/10, at 9pm EDT. At the top of your submitted
files, add comments to answer each of the boxed questions on this worksheet.

1. Efficient calculation of xn where n is large

If you cannot use Matlab’s power operator ^ how would you calculate x to the n-th power? One way is to use
iteration—a loop that executes n − 1 times. Another strategy is recursion—repeated squaring in this case. The
idea is illustrated with the following schematic that shows how to compute x21:

x21 = (x10)2 · x

- x10 = (x5)2

- x5 = (x2)2 · x

- x2 = (x)2

The recursive definition behind the scenes is given by

f(x, n) =


1 if n = 0

f(x, n/2) · f(x, n/2) if n > 0 and n is even

f(x, (n− 1)/2) · f(x, (n− 1)/2) · x if n > 0 and n is odd

.

Write the following function based on the recursive strategy. Do not use loops.

function y = Power(x, n)

% y = x^n where n is an integer >=0

% Use recursion. No loops or the ^ operator.

How many times will your function Power() be called in total if you evaluate the expression Power(2,5)?

Check your answer by adding the statement disp(’Pow!’) as the first line of your function. If you see “Pow!”
printed more than 5 times, how could you modify your code to reduce the number of recursive calls? (still without
using loops or ^)
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2 Writing efficient code

1. Download the script LargestTriangle from the Exercises page. The script (also shown below) is a first attempt
at finding the largest triangle that can be formed from n points on a unit circle. Add code (tic, toc) to the script
to determine how long it takes to find the answer for n = 100, 150, 200. Store the results (time) in vector t1 such
that t1(i) corresponds to n(i), i = 1, 2, 3. Print the values in t1.

for n=100:50:200

theta = rand(n,1)*2*pi; % Angle of n random pts on the unit circle

% Compute the area of the largest triangle that can be formed by 3 of the n points

A = 0; % max area so far

for i=1:n

for j=1:n

for k=1:n

% Triangle with vertices at points i,j,k. Calculate Cartesian coordinates

ci = cos(theta(i)); si = sin(theta(i));

cj = cos(theta(j)); sj = sin(theta(j));

ck = cos(theta(k)); sk = sin(theta(k));

% Calculate area using Heron’s Formula

dij = sqrt((ci-cj)^2 + (si-sj)^2); % distance btw points i,j

dik = sqrt((ci-ck)^2 + (si-sk)^2); % distance btw points i,k

djk = sqrt((cj-ck)^2 + (sj-sk)^2); % distance btw points j,k

s = (dij+dik+djk)/2; Aijk = sqrt((s-dij)*(s-dik)*(s-djk)*s);

A = max(A, Aijk);

end

end

end

end

2. We now start to make the computation more efficient. Append the script rather than modify directly—copy
and paste your code from Part 1 to Part 2 of the script and make the modification in Part 2.

Notice that there are several levels of inefficiency. The area for each combination of i, j, k is computed 6 times.

• Improvement 1: Modify the loop ranges to eliminate duplicate and improper combinations (e.g., (1,3,2) is a
duplicate of (1,2,3); (1,1,2) is not a proper combination for forming a triangle.)

• Also, there are a lot of redundant sine and cosine evaluations. Improvement 2: Address this issue by moving
the ci, si, cj and sj assignments.

Store the time taken to do the computation in vector t2 such that t2(i) corresponds to n(i). Print the values in
t2. How much speed-up did you get?

3. Copy your code from Part 2 to Part 3. Make modifications in Part 3.

• Even with the change in where we compute ci, si, cj and sj as done in Part 2, we are still doing more
sine and cosine evaluations than necessary—given n values of theta we should only need to make n sine
evaluations and n cosine evaluations. This suggests that we can reduce the time further by precomputing the
sine and cosine of theta. Improvement 3a: Compute and store the n sine values in a vector; compute and
store the n cosine values in a vector. You will use these later.

• There is a similar redundancy associated with the repeated side length computations a, b, and c. Improvement
3b: Eliminate this redundancy by precomputing an n×n array D with the property that D(i,j) is the distance
from point (cos(theta(i)), sin(theta(i))) to point (cos(theta(j)), sin(theta(j))). Note that you only need to
compute “half” of D since D(i,j) equals D(j,i). Be sure to use the precomputed sine and cosine values instead
of making new calls to the functions sin and cos.

Improvement 3c: Update the remaining code to use the precomputed distances instead of making extra side length
calculations. Store the time taken to do the computation in vector t3 such that t3(i) corresponds to n(i).

4. Plot the computation time: draw three curves of time vs. n on one set of axes with a legend to identify the
curves. (Read Matlab documentation!) Also show in a table (just use fprintf) the ratio of t1 to t3 for all n.

5. What is the expected computation time for the three methods for n = 1000?

Final note. The speed-up that we get isn’t all “free.” The speed-up gained from precomputation has a cost in
computer memory—from version 1 to version 3, the major memory requirement increases from n (length of theta)
to n2 (size of D). The problem at hand, the language, and the hardware are all considerations in the trade-off
between speed and memory.
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