CS1112 Exercise 6

You have until Monday, 3/2, at 9pm to complete this exercise and submit Problems 2, 3, and 4 using MATLAB Grader. Problem 1 does not need to be submitted or checked off (but you do need to think about what’s going on).

1 Different ways to create vectors

Type the following expressions in the MATLAB Command Window to see what kind of vectors they create. Write the resulting vectors (and answer the questions) on the blanks.

```matlab
a = zeros(1,4) %________________
b = zeros(4,1) %________________ What do the arguments specify?________________________
c = ones(1,3) %________________
d = 10:2:17 %________________
f = 10:-1:17 %________________
g = linspace(10,19,4) %________________
h = linspace(10,6,5) %________________
k = [10 20 40] %________________ What does the space separator do?_____________________
m = [10,20,40] %________________ What does the comma separator do?_____________________
n = [10;20;40] %________________ What does the semi-colon separator do?________________
p = [a k] %________________
q = [b; n] %________________
r = [a n] %ERROR--mismatched dimensions! (Attempt to concatenate a column to a row)
s = b' %________________ This operation is called "transpose"
t = [a b'] %________________
```

2 Basic loop pattern for a vector

Solve in MATLAB Grader

(a) Accumulation Pattern: Compute the sum of all the elements in vector v. Do not use built-in function `sum()`.

(b) Finding the best in a set: Find the maximum value in vector v. Do not use built-in functions `max()`, `min()`, and `sort()`.

3 Searching within a vector

Submit solution in MATLAB Grader

Write a function `vectorQuery(v,n,r)` to determine whether the number r appears in the first n components of vector v. (Assume that r is an integer and that v stores integer values.) The function returns `true` if r is in the first n components of v and `false` otherwise. Your function assumes that v is a vector of numbers, n is a positive integer, and r is a number. Use a loop to do the search. (Do not use `find()`, `contains()`, or vectorized code.) Make sure that the loop index doesn’t go “out of bounds” (if n is greater than the length of vector v).

Be efficient: the loop should stop as soon as r is found.
4 Creating vectors of unknown length

Write a function `sequence(m)` that generates a sequence of random integer numbers between 1 and `m`, inclusive, stopping when a value is repeated for the first time. \(m > 1 \). The function returns a vector containing all the numbers generated (in the order in which they were generated) except for the last value that is a repeated occurrence.

Example: If the generated sequence is 3 1 9 5 7 2 5, the vector to be returned should be 3 1 9 5 7 2.

Notes: 1) Use built-in functions `rand()`, `floor()`, `ceil()` to generate random integer values; do not use function `randi()`. 2) Use a while-loop since this problem is a case of indefinite iteration—the number of iterations needed is not known in advance. 3) Make effective use of the function `vectorQuery()` that you have developed already—Do not use built-in functions `find()` or `contains()`. 4) When you don’t know how long a vector needs to be, you can build it one component at a time. Here is an example to store only the even integer values that a user enters:

```matlab
% Prompt user to enter positive integers and store the even integers in a vector v.
k= 0; % vector length so far
num = input('Enter a positive integer: '); %
while num > 0
    if rem(num,2) == 0
        k= k + 1;
        v(k)= num;
    end
    num = input('Enter a positive integer (negative to stop): ');
end
```

Be sure to log off the lab computer before you leave the lab.