
CS 1112 Final Review

What we’ll do today

•Review of these topics:
•Object-oriented programming
•Recursion
•Sorting algorithms
•Searching algorithms

• Some example exam problems

•Questions

Yay!

Objects and Classes

•Class: A file that specified properties (variables) and methods
(functions) associated with the item that the class represents
• Contains a constructor, a special method that creates new objects

• A class can have subclasses

• Object: One instance of a class
• Objects of the same class have the same properties and the same methods

• The properties of objects of the same class can have different values

Objects and Classes Example: Animal
classdef Animal < handle

properties

name; species; age; hasTail

end

methods

function aml = Animal(n, s, a, hT)

% set properties of aml

end

function birthday(self)

self.age = self.age+1;

end

function c = checkHasTail(self)

% return 1 if hasTail = 1, else 0

end

function c = isOlder(self, otherAnimal)

% return 1 if older than otherAnimal

end

end

end

Note that the end keyword is
used to close the following:
1. The classdef
2. The properties section
3. The methods section
4. Each function inside the

methods section

Objects and Classes: Constructors

Constructor: A method (function) that creates a new object
• Must have the same name as the class

• Can take in parameters to set property values

• Use nargin to ensure that constructor can be called without any arguments

classdef Animal < handle

properties

name; species; age; hasTail

end

methods

function aml = Animal(n, s, a, hT)

% set properties of aml

end

function birthday(self)

self.age = self.age+1;

end

function c = checkHasTail(self)

% return 1 if hasTail = 1, else 0

end

function c = isOlder(self, otherAnimal)

% return 1 if older than otherAnimal

end

end

end

Objects and Classes Example: Animal

Implementation of this constructor:

function aml = Animal(n, s, a, hT)

if (nargin == 4)

aml.name = n;

aml.species = s;

aml.age = a;

aml.hasTail = hT;

end

end

If 4 arguments are not provided, the 4
properties will be set to default values.

Objects and Classes: Create/reference objects

Create new objects by calling the constructor, which returns a reference to
the new object that should be stored in a variable.

Example: a = Animal(‘Bobbert’, ‘pig’, 2, 1);
% An animal object with these properties is created:
% name = ‘Bobbert’, species = ‘pig’, age = 2, hasTail = 1
% a is the reference to this object.

Create an empty array of Animal objects using .empty()
Example: b = Animal.empty()

Check if an object/object array is empty using isempty(<reference>)
Example: isempty(a) returns 0, isempty(b) returns 1

Objects and Classes: Calling methods

Each method in a class takes in a minimum of one parameter (named
‘self’), which is a reference to the object calling the method

Syntax for calling a method:
<reference>.<methodName>(2nd through last input variable)

This is equivalent (but it is better to use the above way):

<methodName>(self, 2nd through last input variable)

classdef Animal < handle

properties

name; species; age; hasTail

end

methods

function aml = Animal(n, s, a, hT)

% set properties of aml

end

function birthday(self)

self.age = self.age+1;

end

function c = checkHasTail(self)

% return 1 if hasTail = 1, else 0

end

function c = isOlder(self, otherAnimal)

% return 1 if older than otherAnimal

end

end

end

Objects and Classes Example: Animal

How to use this method (from
another script, function, etc.):

% Object reference should be

% created first

a = Animal(‘Bobbert’, ‘pig’, 2, 1);

% Call method

a.birthday(); % or: birthday(a);

% See result of method call

disp(a.age) % 3 will be displayed

classdef Animal < handle

properties

name; species; age; hasTail

end

methods

function aml = Animal(n, s, a, hT)

% set properties of aml

end

function birthday(self)

self.age = self.age+1;

end

function c = checkHasTail(self)

% return 1 if hasTail = 1, else 0

end

function c = isOlder(self, otherAnimal)

% return 1 if older than otherAnimal

end

end

end

Objects and Classes Example: Animal

Implementation of this method:

function c = checkHasTail(self)

if (self.hasTail == 1)

c = 1;

else

c = 0;

end

end

classdef Animal < handle

properties

name; species; age; hasTail

end

methods

function aml = Animal(n, s, a, hT)

% set properties of aml

end

function birthday(self)

self.age = self.age+1;

end

function c = checkHasTail(self)

% return 1 if hasTail = 1, else 0

end

function c = isOlder(self, otherAnimal)

% return 1 if older than otherAnimal

end

end

end

Objects and Classes Example: Animal
Implementation of this method:
function c = isOlder(self, otherAnimal)

if (self.age > otherAnimal.age)

c = 1;

else

c = 0;

end

end

How to use this method:

a = Animal(‘Bobbert’, ‘pig’, 2, 1);

b = Animal(‘Robbert’, ‘frog’, 1, 0);

disp(a.isOlder(b)) % will display 1

disp(b.isOlder(a)) % will display 0

Age of a is 2

Age of b
is 1

Objects and Classes: Arrays of objects

Objects of the same class can
be stored in a simple vector/array.

Objects of different classes
(even classes which are related
by inheritance) must be stored in
a cell array.

Example: Write a function that takes in a
vector z of Animal objects and returns a
vector of the indices from z which contain
objects whose species is ‘pig’:

function idx = FindPigs(z)

idx = []; k = 1;

for i = 1:length(z)

if (strcmp(z(i).species, ‘pig’))

idx(k) = i;

k = k+1;

end

end

Objects and Classes: Accessibility

Keywords public, private, protected can be used to restrict access to properties.

• Public properties: can be directly accessed in any subclasses or any other files that
create objects of the class

• Private properties: cannot be directly accessed outside the class
• Protected properties: can only be directly accessed by subclasses

Direct access means being able to access a property via statements such as:

<reference>.propertyName

Indirect access could be in the form of calling a ‘get’ method:

<reference>.getPropertyValue()

% We need ‘getter’ methods to access private or protected properties

Objects and Classes: Inheritance

• A class can have subclasses that share properties and methods.
• Private properties are not inherited, but can be accessed through methods

• Protected properties are inherited; all subclasses can access them

• Public properties are inherited; all classes can access them

• In the constructor of a subclass, there must be a call to the
superclass constructor (using “@” notation)

classdef Animal < handle

properties (Access = protected)

name; species; age; hasTail

end

methods

function aml = Animal(n, s, a, hT)

% set properties of aml

end

function birthday(self)

self.age = self.age+1;

end

function c = checkHasTail(self)

% return 1 if hasTail = 1, else 0

end

function c = isOlder(self, otherAnimal)

% return 1 if older than otherAnimal

end

end

end

Objects and Classes Example: Animal and Bird
classdef Bird < Animal

properties (Access = private)

color

end

methods

function b = Bird(n, s, a, c)

b = b@Animal(n, s, a, 1);

b.color = c;

end

function c = getColor(self)

c = self.color;

end

end

end

Bird is a subclass of Animal and inherits all of
its protected properties.

Bird has one additional property: color.

hasTail = 1
for all Bird
objects!

function idxs = greatestOverlap(iArray)

% Find the biggest pairwise overlap between Intervals in iArray.

% iArray is an array (length > 1) of Interval references.

% idxs is a vector of length 2 storing indices of the two Intervals in iArray

% that overlap the most. If there is not a pair of overlapping Intervals in

% iArray, idxs is an empty vector. Write efficient code (avoid unnecessary

% iteration

Potentially useful methods in the Interval class:
• getWidth(self) returns the difference between the left and right endpoints (i.e. the

width) of the Interval object referenced by self.
• overlap(self, other) returns an Interval object whose endpoints are the points

between which the two Interval objects, self and other, overlap. If they do not overlap,
this method returns an empty Interval object.

Review Question #7

Review Question #7

Thing we need to do Programming concept needed to do this thing

1 Find overlap between all possible
combinations of two Interval objects (efficiently)

Use a nested for-loop to check all possible
combinations in iArray

2 Determine the maximum overlap
Use a maxWidthSoFar variable to keep track of

the width of the maximum overlap we’ve found so
far

3 Store the indices from iArray of the Intervals
which overlap the most Update idxs when maxWidthSoFar changes

4 If no Intervals overlap, idxs is an empty vector
idxs should be initialized as empty, and only

filled if the width of the overlap between any two
Intervals is greater than 0

Designing an algorithm

Review Question #7: Solution
function idxs = greatestOverlap(iArray)

idxs = [];

maxWidth = 0;

n = length(iArray);

for i = 1:n-1 % Notice this loop ends at n-1

for j = i+1:n % Notice this loop started at i+1

olap = iArray(i).overlap(iArray(j));

if ~isempty(olap) && olap.getWidth() > maxWidth

maxWidth = olap.getWidth();

idxs = [i j];

end

end

end

Recursion
• A recursive function is a function that calls itself repeatedly with a smaller

input variable each time
• Recursion stops when the parameter becomes so small that it reaches the

base case of the function

Example
Write a function that recursively
computes a factorial.
e.g. 4! = 4 * 3!

 = 4 * 3 * 2!
 = 4 * 3 * 2 * 1!
 = 4 * 3 * 2 * 1

function m = Factorial(n)

if n == 1 % base case

m = 1;

else % recursive case

m = n * Factorial(n-1);

end

Recursion Example: Review Question #10
P14.1.3 By the reverse of a string s we mean the string obtained by
reversing the order of the characters in s. Thus, if s = ‘abcde’, then
‘edcba’ is its reverse. (a) Write a nonrecursive function t = Reverse(s)
that does this using a loop. (b) Note that if n is the length of s, then the
reverse of s is the concatenation of the reverse of s(2:n) and s(1) in that
order. Using this idea, write a recursive function t = ReverseR(s) that does
this. (c) Compare the execution times for the two implementations.

Recursion Example: Review Question #10
P14.1.3 By the reverse of a string s we mean the string obtained by
reversing the order of the characters in s. Thus, if s = ‘abcde’, then
‘edcba’ is its reverse. (a) Write a nonrecursive function t = Reverse(s)
that does this using a loop. (b) Note that if n is the length of s, then the
reverse of s is the concatenation of the reverse of s(2:n) and s(1) in that
order. Using this idea, write a recursive function t = ReverseR(s) that does
this. (c) Compare the execution times for the two implementations.

Reverse([‘a’,’b’,’c’,’d’,’e’]) -> [Reverse([‘b’,’c’,’d’,’e’]), ‘a’]

Recursion Example: Review Question #10
Write a function that recursively reverses a string.
E.g. ‘abcde’ ￫ ‘edcba’

function t = Reverse(s)

n = length(s);

if n == 1 % base case: if n == 1, s is the reverse of itself

t = s;

else % reverse the last n-1 characters of s, append to s(1)

t = [Reverse(s(2:n)), s(1)];

end

Sorting algorithms: Insertion sort

On each iteration of insertion sort, the algorithm does the following:
•Assume that the first k elements of the array are sorted
• Look at the (k+1)th element, and insert it into the correct position
among the first k elements

• Now we can assume that the first (k+1) elements are sorted
• Repeat the above until: (k+1) = length of array

Sorting algorithms: Insertion sort - Example
Iteration 1: x(1:1) is sorted

Iteration 2: x(1:2) is sorted

Iteration 3: x(1:3) is sorted

Iteration 4: x(1:4) is sorted

Iteration 5: x(1:5) is sorted

Insertion sort algorithm: Sort a vector x

n = length(x)

for k = 1:n-1 % Repeat until k+1 = n

% Sort x(1:k+1) given that x(1:k) is sorted: move the item at

% position (k+1) backwards until it is in the correct place.

j = k;

need2swap = x(j+1) < x(j); % Check if need to move (k+1)th item backwards

while need2swap % continue moving the item backwards until

temp = x(j); % it is in the correct place

x(j) = x(j+1);

x(j+1) = temp;

j = j-1;

need2swap = j>0 && x(j+1)<x(j);

end

end

Sorting algorithms: Insertion sort

• In the worst case, make k comparisons to insert an element in
a sorted array of k elements. For an array of length N:

1 + 2 + … + (N-1) = N(N-1)/2, say N2 for big N

How much “work” is insertion sort?

1. (Point struct and sorting algorithm)

% Given a structure array Pts where each structure has two fields, x and y,

% sort Pts so that the structures are in the order of

% increasing distance from (0,0)

% Write two different scripts to solve this problem:

% (a) Make effective use of built-in function sort.

% (b) Use the INSERTION SORT algorithm; do not use built-in function sort.

Review Question #1b

n = length(Pts);

for i = 1:n-1

j = i;

need2swap =

while need2swap

% swap elements in Pts array

tempP = Pts(j); Pts(j) = Pts(j+1); Pts(j+1) = tempP;

j = j-1;

need2swap =

end

end

Review Question #1b: Solution

n = length(Pts);

dis = zeros(1,n); % dis stores distance of each point from origin

dis(1) = sqrt(Pts(1).x^2 + Pts(1).y^2);

for i = 1:n-1

% Sort dis(1:i+1) given that dis(1:i) is sorted

dis(i+1) = sqrt(Pts(i+1).x^2 + Pts(i+1).y^2);

j = i;

need2swap =

while need2swap

% swap elements in Pts array

tempP = Pts(j); Pts(j) = Pts(j+1); Pts(j+1) = tempP;

j = j-1;

need2swap =

end

end

Review Question #1b: Solution

n = length(Pts);

dis = zeros(1,n); % dis stores distance of each point from origin

dis(1) = sqrt(Pts(1).x^2 + Pts(1).y^2);

for i = 1:n-1

% Sort dis(1:i+1) given that dis(1:i) is sorted

dis(i+1) = sqrt(Pts(i+1).x^2 + Pts(i+1).y^2);

j = i;

need2swap = dis(j+1) < dis(j);

while need2swap

% swap elements in dis array

tempD = dis(j); dis(j) = dis(j+1); dis(j+1) = tempD;

% swap elements in Pts array

tempP = Pts(j); Pts(j) = Pts(j+1); Pts(j+1) = tempP;

j = j-1;

need2swap = j>0 && dis(j+1)<dis(j);

end

end

Review Question #1b: Solution

n = length(Pts);

dis = zeros(1,n); % dis stores distance of each point from origin

dis(1) = sqrt(Pts(1).x^2 + Pts(1).y^2);

for i = 1:n-1

% Sort dis(1:i+1) given that dis(1:i) is sorted

dis(i+1) = sqrt(Pts(i+1).x^2 + Pts(i+1).y^2);

j = i;

need2swap = dis(j+1) < dis(j);

while need2swap

% swap elements in dis array

tempD = dis(j); dis(j) = dis(j+1); dis(j+1) = tempD;

% swap elements in Pts array

tempP = Pts(j); Pts(j) = Pts(j+1); Pts(j+1) = tempP;

j = j-1;

need2swap = j>0 && dis(j+1)<dis(j);

end

end

Review Question #1b: Solution

Sorting algorithms: Merge sort

Merge sort on an array of length n works by:
•Dividing the vector into n arrays of 1 component each
• Merge adjacent components in sorted order to produce
ceil(n/2) arrays of length 2

• Merge adjacent vectors of length 2 in sorted order to produce
ceil(n/4) arrays of length 4
… continue merging until 1 sorted array of length n is produced

function y = mergeSort(x)

% x is a vector. y is a vector

% consisting of the values in x

% sorted from smallest to largest

n = length(x);

if n == 1

y = x;

else

m = floor(n/2);

yL = mergeSort(x(1:m));

yR = mergeSort(x(m+1:n));

y = merge(yL,yR);

end

function z = merge(x,y)

nx = length(x); ny = length(y);

z = zeros(1, nx+ny);

ix = 1; iy = 1; iz = 1;

while ix<=nx && iy<=ny

if x(ix) < y(iy)

z(iz)=x(ix); ix=ix+1; iz=iz+1;

else

z(iz)=y(iy); iy=iy+1; iz=iz+1;

end

end

while ix<=nx % copy remaining x-values

z(iz)=x(ix); ix=ix+1; iz=iz+1;

end

while iy<=ny % copy remaining y-values

z(iz)=y(iy); iy=iy+1; iz=iz+1;

end

Sorting algorithms: Merge sort - Example

6 5 3 1 8 7 2 4

6 5 3 1 8 7 2 4

6

3 1 8 7 2 46 5

5 3 1 8 7 2 4

Sorting algorithms: Merge sort - Example

6 5 3 1 8 7 2 4

Sorting algorithms: Merge sort - Example

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

Sorting algorithms: Merge sort - Example

1 3 5 6 2 4 7 8

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

Sorting algorithms: Merge sort - Example

1 3 5 6 2 4 7 8

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

1

1

1

ix:

iz:

iy:

z

x y

Sorting algorithms: Merge sort - Example

1

1 3 5 6 2 4 7 8

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

2

2

1

ix:

iz:

iy:

z

x y

Sorting algorithms: Merge sort - Example

1 2

1 3 5 6 2 4 7 8

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

2

3

2

ix:

iz:

iy:

z

x y

Sorting algorithms: Merge sort - Example

1 2 3

1 3 5 6 2 4 7 8

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

3

4

2

ix:

iz:

iy:

z

x y

Sorting algorithms: Merge sort - Example

1 2 3 4

1 3 5 6 2 4 7 8

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

3

5

3

ix:

iz:

iy:

z

x y

Sorting algorithms: Merge sort - Example

1 2 3 4 5

1 3 5 6 2 4 7 8

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

4

6

3

ix:

iz:

iy:

z

x y

Sorting algorithms: Merge sort - Example

1 2 3 4 5 6

1 3 5 6 2 4 7 8

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

5

7

3

ix:

iz:

iy:

z

x y

Sorting algorithms: Merge sort - Example

1 2 3 4 5 6 7

1 3 5 6 2 4 7 8

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

5

8

4

ix:

iz:

iy:

z

x y

Sorting algorithms: Merge sort - Example

1 2 3 4 5 6 7 8

1 3 5 6 2 4 7 8

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

5

9

5

ix:

iz:

iy:

z

x y

Sorting algorithms: Merge sort - Example

1 2 3 4 5 6 7 8

1 3 5 6 2 4 7 8

6

1 3 7 8 2 45 6

5 3 1 8 7 2 4

N∙log2(N)

Searching algorithms: Linear Search

% Linear Search

% f is index of first occurrence of value x in vector v.

% f is -1 if x not found.

k = 1;

while k<=length(v) && v(k)~=x

k = k+1;

end

if k>length(v)

f = -1; % signal for x not found

else

f = k;

end

n comparisons against the
target are needed in worst
case, n = length(v).

Searching algorithms: Binary Search
only works on sorted arrays!

An item in a sorted array of length n can
be located with just log2n comparisons.

Searching algorithms: Binary Search
function L = binarySearch(x, v)

% Find position after which to insert x. v(1)<...<v(end)

% L is the index such that v(L)<=x<v(L+1), L=0 if x<v(1).

% If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R)

% Since x may not be in v, initially set …
L = 0; R = length(v) + 1;

% Keep halving [L..R] until R-L is 1, always keeping v(L)<=x<v(R)

while R ~= L+1

m = floor((L+R)/2); % middle of search window

if v(m) <= x

L = m;

else

R = m:

end

end

Searching algorithms: Binary Search - Example

12 15 33 35 42 45 51 62 73 75 86 98

0 1 2 3 4 5 6 7 8 9 10 11 12 13

L:

m:

R:

0

13

Target x = 70

12 15 33 35 42 45 51 62 73 75 86 98

L:

m:

R:

0

6

13

v(m) <= x, so throw away the left half

Searching algorithms: Binary Search - Example

Target x = 70

0 1 2 3 4 5 6 7 8 9 10 11 12 13

12 15 33 35 42 45 51 62 73 75 86 98

L:

m:

R:

6

9

13

Searching algorithms: Binary Search - Example

v(m) > x, so throw away the right half
Target x = 70

0 1 2 3 4 5 6 7 8 9 10 11 12 13

12 15 33 35 42 45 51 62 73 75 86 98

L:

m:

R:

6

7

9

Searching algorithms: Binary Search - Example

v(m) <= x, so throw away the left half
Target x = 70

0 1 2 3 4 5 6 7 8 9 10 11 12 13

12 15 33 35 42 45 51 62 73 75 86 98

L:

m:

R:

7

8

9

Searching algorithms: Binary Search - Example

v(m) <= x, so throw away the left half
Target x = 70

0 1 2 3 4 5 6 7 8 9 10 11 12 13

12 15 33 35 42 45 51 62 73 75 86 98

L:

m:

R:

8

8

9

Searching algorithms: Binary Search - Example

Since R-L = 1, we’re done!

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Write Efficient Code
• Instead of looping through the whole array, can we stop earlier? (Lab 6 Problem 3)

Write a function vectorQuery(v,n,r) to determine whether the number r appears in the first n
components of vector v. The function returns 1 if r is in the first n components of v and 0 otherwise.
Your function assumes that v is a vector of numbers, n is a positive integer, and r is a number. Use a
loop to do the search. (Do not use find or vectorized code.) Make sure that the loop index doesn’t go
“out of bounds” (if n is greater than the length of vector v).

• For a nested for loop problem (Lab 14 problem 2)
• Can we modify the loop header to save iterations?
• Can we precompute/move computation to outer for-loop to save operations?

