
CS 1112 Prelim 2 Review



Prelim 2 Topics
● 2-dimensional array (matrix)

○ 2-d array traverse with nested loops
○ Partial matrix traverse, e.g., triangular

● 3-dimensional array (e.g., color image data)
● character and char arrays  (1-d, 2-d) (We do not use type String. No ASCII 

arithmetic.)
● the type uint8 (doing arithmetic with uint8 variables)
● Nested loops pattern for all non-duplicating combinations in a set (e.g., n-choose-k 

type situations)
● Linear search
● vectorized code (as discussed in lecture)



2-D and 3-D arrays
2-D array (also known as a matrix)

• A collection of data (e.g. numbers, or characters, 
but not both) stored in rows and columns

• Items are referenced using 2 numbers 
(row # and column #)

3-D array
• A series of 2-D arrays layered on each other
• Items are referenced by 3 numbers 

(row #, column #, layer #)

3 columns

3 rows

3 columns

3 layers

3 r
ow

s

Example: 3x3 matrix

Example: 3x3x3 3-D array



2-D and 3-D arrays
Initialize a 2-D array, A
% Create 3x3 matrix of zeros
A = zeros(3,3);

Find size of 2-D array A
[nr,nc] = size(A);  % nr=3,nc=3

Pattern for traversing a 2-D array
for r = 1:nr
    for c = 1:nc
        % Do something to A(r,c)
    end
end

Initialize a 3-D array, B
% Create 3x3x3 matrix of zeros
B = zeros(3,3,3);

Find size of 3-D array B
[nr,nc,np] = size(B);  % nr=3,nc=3,np=3

Pattern for traversing a 3-D array
for r = 1:nr
    for c = 1:nc
        for p = 1:np
            % Do something to A(r,c,p)
        end
    end
end

Note: this would also 
work for a 2-D array; 
np would just be 1.

Remember the image of a 3-D array as a 
stack of 2-D arrays: this pattern works by 

examining down the layers, then across the 
columns, then down the rows



Matrix transposition
Given a matrix M, where
M =  1   2
        3   4

We’d like to create a matrix T, which 
stores the transpose of M.
T =  1   3
       2   4
 
How do we write code to do this?

Hints: the rows of M have become 
the columns of T.  M(1, 2) is the same 
as T(2, 1). 

Solution:
• We know that we need a nested 

for-loop to go through all elements of 
M.

• Relation between M and T: reverse 
positions in M to get positions in T

[nr,nc] = size(M);
for r = 1:nr
    for c = 1:nc
        T(c,r) = M(r,c);
    end
end 



Mirror image of a 2-D array
Given a matrix M, where
M =  1   2   3   4   
        5   6   7   8

We’d like to create a matrix T, which is 
the mirror image of M.
T =  4   3   2   1
       8   6   7   5
 
How do we write code to do this?

Hint: Reverse the order of the 
columns of M to get T.

How do we re-order the columns?
M =   1     2       3     4   
          5    6       7     8

Relationship between a pair of columns 
that must be reversed:

Column c should be replaced by column 
(nc – c) + 1.

Switch columns 1 and nc

Switch columns 2 and nc-1



Mirror image of a 2-D array
Given a matrix M, where
M =  1   2   3   4   
        5   6   7   8

We’d like to create a matrix T, which is 
the mirror image of M.
T =  4   3   2   1
       8   6   7   5
 
How do we write code to do this?

Hint: Reverse the order of the 
columns of M to get T.

Non-vectorized solution:
Column c should be exchanged with 
column (nc – c) + 1.

[nr,nc] = size(M);

for r = 1:nr

    for c = 1:nc

        T(r,c) = M(r,(nc-c)+1));

    end

end



Mirror image of a 2-D array
Given a matrix M, where
M =  1   2   3   4   
        5   6   7   8

We’d like to create a matrix T, which is 
the mirror image of M.
T =  4   3   2   1
       8   6   7   5
 
How do we write code to do this?

Hint: Reverse the order of the 
columns of M to get T.

Vectorized solution:
Column c should be exchanged with 
column (nc – c) + 1.

[nr,nc] = size(M);

for c = 1:nc

    T(:,c) = M(:,(nc-c)+1));

end

The vectorized solution exchanges entire 
columns instead of individual elements.



Mirror image of a 3-D array
Vectorized solution:

Column c should be exchanged with 
column (nc – c) + 1.

[nr, nc, np] = size(M);

for c = 1:nc

    T(:,c,:) = M(:,nc-c+1,:);

end

Non-vectorized solution:

Column c should be exchanged with 
column (nc – c) + 1.

[nr, nc, np] = size(M);

for p = 1:np

   for r = 1:nr

      for c = 1:nc

         T(r,c,p) = M(r,(nc-c)+1,p);

      end

   end

end



2-D and 3-D arrays: Sub-arrays
The neighborhood of a particular cell in an 
array is the set of cells that surround that one 
cell within a particular radius.

(i,j) (i,j)

Neighborhood radius: r = 1 Neighborhood radius: r = 2
Column j

Row i

Column j

Row i

i – r

i + r

i – r

i + r

j – r j + r j – r j + r

How do we extract the sub-array 
that corresponds to the 

highlighted neighborhood?

We need to select all rows 
between row i-r and row i+r, and 
all columns between columns j-r 

and j+r.



2-D and 3-D arrays: Sub-arrays

(i,j)

Neighborhood radius: r = 2
Column j

Row i

i – r

j + r

From previous slide: We need to select all rows between row i-r and row i+r, and all 
columns between columns j-r and j+r.  What if the neighborhood goes out of bounds?

How do we generalize this approach so that it works 
when i-r or i+r or j-r or j+r are out of bounds?

Solution:
[m,n] = size(M);
iMin = max(1,i-r)
iMax = min(m,i+r) 
jMin = max(1,j-r) 
jMax = min(n,j+r)

% Now extract submatrix: the neighborhood
C = M(iMin:iMax, jMin:jMax)



2-D and 3-D arrays: Resizing an array
Interpolating on a matrix means:

• Inserting new rows/columns between existing rows/columns
• The new rows/columns are calculated from a pair of originally adjacent 

rows/columns

Example of expanding a matrix (original cells in gray):

1 2 3

4 5 6

1 1.5 2 2.5 3

2.5 3 3.5 4 4.5

4 4.5 5 5.5 6



2-D and 3-D arrays: Resizing an array
If the interpolation involves creating additional rows and columns, 
it is easier to work with one dimension at a time, i.e. columns first 
and then rows.

Example of expanding a matrix (original cells in gray):

1 2 3

4 5 6

1 1.5 2 2.5 3

4 4.5 5 5.5 6

1 1.5 2 2.5 3

2.5 3 3.5 4 4.5

4 4.5 5 5.5 6
Size: nr x nc Size: nr x 2*nc-1

Size: 2*nr-1 x 2*nc-1



2-D and 3-D arrays: Resizing an array

1 2 3

4 5 6

1 1.5 2 2.5 3

4 4.5 5 5.5 6

1 1.5 2 2.5 3

2.5 3 3.5 4 4.5

4 4.5 5 5.5 6
Size: nr x nc Size: nr x 2*nc-1

Size: 2*nr-1 x 2*nc-1

Step 1: interpolate on columns
for r= 1:nr
    for c= 1:nc-1

         % copy original data
        wideM(r,c*2-1)= M(r,c);

         % calculate average of adjacent columns
        wideM(r,c*2)= M(r,c)/2 + M(r,c+1)/2;
    end
    wideM(r,nc*2-1)= M(r,nc);
end

Step 2: interpolate on rows
for c= 1:nc*2-1
    for r= 1:nr-1

         % copy data from intermediate matrix
        newM(r*2-1,c)= wideM(r,c);

         % calculate average of adjacent rows
        newM(r*2,c)= wideM(r,c)/2 + wideM(r+1,c)/2;
    end
    newM(nr*2-1,c)= wideM(nr,c);
end



2-D and 3-D arrays: Resizing an array

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

3.5 5.5

11.5 13.5

How might we reduce a 2-D array by averaging each group of 4 
cells?

Solution:
• Size of new matrix: ½ the size of the original one
• We can pick one cell in each group (for example, pick the cells 

containing the values 6, 8, 14, 16), and calculate the average 
of it and its neighbors.

[nr,nc] = size(M);
N = zeros(nr/2, nc/2);
for r = 2:2:nr
    for c = 2:2:nc
        avg = (M(r-1,c)+M(r-1,c-1)+M(r,c-1)+M(r,c))/4;
        N(r/2,c/2) = avg;
    end
end



Spring 2015 Prelim: Question 1b



Spring 2015 Prelim: Question 1b

# Thing we need to do Programming concept needed to do this 
thing

1 Go through a 2-D array

2

3

Designing an algorithm



Spring 2015 Prelim: Question 1b

# Thing we need to do Programming concept needed to do this 
thing

1 Go through a 2-D array Nested for-loop

2

3

Designing an algorithm



Spring 2015 Prelim: Question 1b

# Thing we need to do Programming concept needed to do this 
thing

1 Go through a 2-D array Nested for-loop

2 Look at items only in the even columns

3

Designing an algorithm



Spring 2015 Prelim: Question 1b

# Thing we need to do Programming concept needed to do this 
thing

1 Go through a 2-D array Nested for-loop

2 Look at items only in the even columns Inner for-loop should iterate as:  c = 2:2:nc

3

Designing an algorithm



Spring 2015 Prelim: Question 1b

# Thing we need to do Programming concept needed to do this 
thing

1 Go through a 2-D array Nested for-loop

2 Look at items only in the even columns Inner for-loop should iterate as:  c = 2:2:nc

3 Find the minimum of the set of cells being 
examined

Designing an algorithm



Spring 2015 Prelim: Question 1b

# Thing we need to do Programming concept needed to do this 
thing

1 Go through a 2-D array Nested for-loop

2 Look at items only in the even columns Inner for-loop should iterate as:  c = 2:2:nc

3 Find the minimum of the set of cells being 
examined

“Best-so-far” pattern: 
1. initialize a variable to hold minSoFar

2. update minSoFar as we examine each cell

Designing an algorithm



Spring 2015 Prelim: Question 1b
Translating what we need to do into code:

[nr, nc]= size(M);
 
for r=  
    for c=  
         
             
         
    end 
end 

Connection to previous slide:
Red: nested for-loop
Green: only examine items in even columns
Blue: finding minimum so far



Spring 2015 Prelim: Question 1b
Translating what we need to do into code:

[nr, nc]= size(M);
 
for r= 1:nr 
    for c= 2:2:nc % better than checking if each column is odd or even

         
             
         
    end 
end 

Connection to previous slide:
Red: nested for-loop
Green: only examine items in even columns
Blue: finding minimum so far



Spring 2015 Prelim: Question 1b
Translating what we need to do into code:

[nr, nc]= size(M);
minSoFar = inf; 
for r= 1:nr 
    for c= 2:2:nc % better than checking if each column is odd or even

        if M(r,c) < minSoFar 
            minSoFar = M(r,c); 
        end 
    end 
end 

Connection to previous slide:
Red: nested for-loop
Green: only examine items in even columns
Blue: finding minimum so far



Working with images: uint8 type
What is uint8?
An integer that can hold values between 0 and 255 (28 – 1 = 255). Images can be 
represented with numbers in this range.

How to convert numeric data into uint8:
Given an array x of (regular) numbers, 
y = uint8(x);

Note about overflow:
If you need to perform an arithmetic operation on uint8 numbers, e.g. averaging, be careful 
that the numbers won’t overflow, i.e. exceed 255.
goodAverage = x(1)/3 + x(2)/3 + x(3)/3;   % Do this
badAverage = (x(1) + x(2) + x(3))/3;   % Don’t do this



Working with images: uint8 type
What is uint8?
An integer that can hold values between 0 and 255 (28 – 1 = 255). Images can be 
represented with numbers in this range.

How to convert numeric data into uint8:
Given an array x of (regular) numbers, 
y = uint8(x);

Note about overflow:
If you need to perform an arithmetic operation on uint8 numbers, e.g. averaging, be careful 
that the numbers won’t overflow, i.e. exceed 255.
goodAverage = x(1)/3 + x(2)/3 + x(3)/3;   % Do this
badAverage = (x(1) + x(2) + x(3))/3;   % Don’t do this



Working with images: uint8 type
What is uint8?
An integer that can hold values between 0 and 255 (28 – 1 = 255). Images can be 
represented with numbers in this range.

How to convert numeric data into uint8:
Given an array x of (regular) numbers, 
y = uint8(x);

Note about overflow:
If you need to perform an arithmetic operation on uint8 numbers, e.g. averaging, be careful 
that the numbers won’t overflow, i.e. exceed 255.
goodAverage = x(1)/3 + x(2)/3 + x(3)/3;   % Do this
badAverage = (x(1) + x(2) + x(3))/3;   % Don’t do this



Fall 2015 Prelim: Question 5



Fall 2015 Prelim: Question 5

# Thing we need to do Programming concept needed to do this 
thing

1 Must loop through each pixel of the image before 
we can determine what is done with the colors Outer double for-loop for the pixels

2 Detect if a given pixel has a full-size 
neighborhood of radius s

Full sized if s <= c <= nc-s+1 
          and s <= r <= nr-s+1

3

For full sized neighborhood, take the max 
intensity within the neighborhood for each color 

individually.

Otherwise, compute the gray value at the pixel 
and assign to all layers

Full sized -> Correct use of max/min on the 
neighborhood

Otherwise -> Correct averaging of uint8 values

Designing an algorithm



Fall 2015 Prelim: Question 5

# Thing we need to do Programming concept needed to do this 
thing

1 Must loop through each pixel of the image before 
we can determine what is done with the colors Outer double for-loop for the pixels

2 Detect if a given pixel has a full-size 
neighborhood of radius s

Full sized if s <= c <= nc-s+1 
          and s <= r <= nr-s+1

3

For full sized neighborhood, take the max 
intensity within the neighborhood for each color 

individually.

Otherwise, compute the gray value at the pixel 
and assign to all layers

Full sized -> Correct use of max/min on the 
neighborhood

Otherwise -> Correct averaging of uint8 values

Designing an algorithm



Fall 2015 Prelim: Question 5

# Thing we need to do Programming concept needed to do this 
thing

1 Must loop through each pixel of the image before 
we can determine what is done with the colors Outer double for-loop for the pixels

2 Detect if a given pixel has a full-size 
neighborhood of radius s

Full sized if s <= c <= nc-s+1 
          and s <= r <= nr-s+1

3

For full sized neighborhood, take the max 
intensity within the neighborhood for each color 

individually.

Otherwise, compute the gray value at the pixel 
and assign to all layers

Full sized -> Correct use of max/min on the 
neighborhood

Otherwise -> Correct averaging of uint8 values

Designing an algorithm



Fall 2015 Prelim: Question 5

# Thing we need to do Programming concept needed to do this 
thing

1 Must loop through each pixel of the image before 
we can determine what is done with the colors Outer double for-loop for the pixels

2 Detect if a given pixel has a full-size 
neighborhood of radius s

Full sized if s+1 <= c <= nc-s 
          and s+1 <= r <= nr-s

3

For full sized neighborhood, take the max 
intensity within the neighborhood for each color 

individually.

Otherwise, compute the gray value at the pixel 
and assign to all layers

Full sized -> Correct use of max/min on the 
neighborhood

Otherwise -> Correct averaging of uint8 values

Designing an algorithm



Fall 2015 Prelim: Question 5

# Thing we need to do Programming concept needed to do this 
thing

1 Must loop through each pixel of the image before 
we can determine what is done with the colors Outer double for-loop for the pixels

2 Detect if a given pixel has a full-size 
neighborhood of radius s

Full sized if s+1 <= c <= nc-s 
          and s+1 <= r <= nr-s

3

For full sized neighborhood, take the max 
intensity within the neighborhood for each color 

individually.

Otherwise, compute the gray value at the pixel 
and assign to all layers

Full sized -> Correct use of max/min on the 
neighborhood

Otherwise -> Correct averaging of uint8 values

Designing an algorithm



Fall 2015 Prelim: Question 5

# Thing we need to do Programming concept needed to do this 
thing

1 Must loop through each pixel of the image before 
we can determine what is done with the colors Outer double for-loop for the pixels

2 Detect if a given pixel has a full-size 
neighborhood of radius s

Full sized if s+1 <= c <= nc-s 
          and s+1 <= r <= nr-s

3

For full sized neighborhood, take the max 
intensity within the neighborhood for each color 

individually.

Otherwise, compute the gray value at the pixel 
and assign to all layers

Full sized -> Correct use of max/min on the 
neighborhood

Otherwise -> Correct averaging of uint8 values

Designing an algorithm



Fall 2015 Prelim: Question 5
Translating what we need to do into code:

Q = P;
[nr, nc, nl]= size(P); 
for r= 1:nr 
    for c= 1:nc 
        if c >= s+1 && c <= nc-s && r >= s+1 && r <= nr-s
             nbd = P( r-s:r+s, c-s:c+s, : );
             Q( r, c, 1) = max( max( P( : , : , 1 ) ) );
             Q( r, c, 2) = max( max( P( : , : , 2 ) ) );
             Q( r, c, 3) = max( max( P( : , : , 3 ) ) );
        else
             Q( r, c, : ) = P(r , c, 1) / 3 + P(r , c, 2) / 3 + P(r , c, 3) / 3
        end
    end
end 

Connection to previous slide:
Red: Outer double for-loop for the pixels
Green: Determine if neighborhood full sized
Blue: Compute colors



Fall 2015 Prelim: Question 5
Translating what we need to do into code:

Q = P;
[nr, nc, nl]= size(P); 
for r= 1:nr 
    for c= 1:nc 
        if c >= s+1 && c <= nc-s && r >= s+1 && r <= nr-s
             nbd = P( r-s:r+s, c-s:c+s, : );
             Q( r, c, 1) = max( max( P( : , : , 1 ) ) );
             Q( r, c, 2) = max( max( P( : , : , 2 ) ) );
             Q( r, c, 3) = max( max( P( : , : , 3 ) ) );
        else
             Q( r, c, : ) = P(r , c, 1) / 3 + P(r , c, 2) / 3 + P(r , c, 3) / 3
        end
    end
end 

Connection to previous slide:
Red: Outer double for-loop for the pixels
Green: Determine if neighborhood full sized
Blue: Compute colors



Fall 2015 Prelim: Question 5
Translating what we need to do into code:

Q = P;
[nr, nc, nl]= size(P); 
for r= 1:nr 
    for c= 1:nc 
        if c >= s+1 && c <= nc-s && r >= s+1 && r <= nr-s
             nbd = P( r-s:r+s, c-s:c+s, : );
             Q( r, c, 1) = max( max( nbd( : , : , 1 ) ) );
             Q( r, c, 2) = max( max( nbd( : , : , 2 ) ) );
             Q( r, c, 3) = max( max( nbd( : , : , 3 ) ) );
        else
             Q( r, c, : ) = P(r , c, 1) / 3 + P(r , c, 2) / 3 + P(r , c, 3) / 3
        end
    end
end 

Connection to previous slide:
Red: Outer double for-loop for the pixels
Green: Determine if neighborhood full sized
Blue: Compute colors



Strings and characters
• A string is a 1-D array (vector) of characters, 1 character per cell

• A 2-D array with n rows could store n strings, with one string per row, as long 
as each string has the same number of characters (columns).

‘m’ ‘a’ ‘t’ ‘l’ ‘a’ ‘b’

‘m’ ‘a’ ‘t’ ‘l’ ‘a’ ‘b’

‘i’ ‘s’ ‘ ’ ‘ ’ ‘ ’ ‘ ’

‘f’ ‘u’ ‘n’ ‘ ’ ‘ ’ ‘ ’

1-D array of characters (1 row, 6 columns)

2-D array of characters (3 rows, 6 columns)
Note that empty spaces have to be appended onto the shorter 
words so that the strings on each row have the same length.

A = ‘matlab’;
A = ['m','a','t','l','a','b'];
disp(A(3)) % prints ‘t’

B = [‘matlab’; ‘is    ’; ‘fun   ’];
disp(B(1,:)  % prints ‘matlab’



Strings and characters
• A string is a 1-D array (vector) of characters, 1 character per cell

• A 2-D array with n rows could store n strings, with one string per row, as long 
as each string has the same number of characters (columns).

‘m’ ‘a’ ‘t’ ‘l’ ‘a’ ‘b’

‘m’ ‘a’ ‘t’ ‘l’ ‘a’ ‘b’

‘i’ ‘s’ ‘ ’ ‘ ’ ‘ ’ ‘ ’

‘f’ ‘u’ ‘n’ ‘ ’ ‘ ’ ‘ ’

1-D array of characters (1 row, 6 columns)

2-D array of characters (3 rows, 6 columns)
Note that empty spaces have to be appended onto the shorter 
words so that the strings on each row have the same length.

A = ‘matlab’;
A = ['m','a','t','l','a','b'];
disp(A(3)) % prints ‘t’

B = [‘matlab’; ‘is    ’; ‘fun   ’];
disp(B(1,:)  % prints ‘matlab’



Strings and characters
• A string is a 1-D array (vector) of characters, 1 character per cell

• A 2-D array with n rows could store n strings, with one string per row, as long 
as each string has the same number of characters (columns).

‘m’ ‘a’ ‘t’ ‘l’ ‘a’ ‘b’

‘m’ ‘a’ ‘t’ ‘l’ ‘a’ ‘b’

‘i’ ‘s’ ‘ ’ ‘ ’ ‘ ’ ‘ ’

‘f’ ‘u’ ‘n’ ‘ ’ ‘ ’ ‘ ’

1-D array of characters (1 row, 6 columns)

2-D array of characters (3 rows, 6 columns)
Note that empty spaces have to be appended onto the shorter 
words so that the strings on each row have the same length.

A = ‘matlab’;
A = ['m','a','t','l','a','b'];
disp(A(3)) % prints ‘t’

B = [‘matlab’; ‘is    ’; ‘fun   ’];
disp(B(1,:))  % prints ‘matlab’



Strings and characters: Useful functions
• strcmp(str1, str2)

Returns 1 if str1 has all the same 
characters as str2, and 0 if not. 
Case-sensitive.

• str2double(str1)
If str1 is a string containing a number, the 
function returns that number as a 
numerical value. Returns NaN if str1 is 
something other than a number.

strcmp(‘matlab’, ‘mAtlab’)  % 0

str2double(‘20’) + 2 % 22
str2double(‘hi’) % NaN



Strings and characters: Useful functions
• strcmp(str1, str2)

Returns 1 if str1 has all the same 
characters as str2, and 0 if not. 
Case-sensitive.

• str2double(str1)
If str1 is a string containing a number, the 
function returns that number as a 
numerical value. Returns NaN if str1 is 
something other than a number.

strcmp(‘matlab’, ‘mAtlab’)  % 0

str2double(‘20’) + 2 % 22
str2double(‘hi’) % NaN



Strings and characters: Manipulating strings
Given a string s, where

s =  ‘hello’

We’d like to reverse the string to 
obtain

r =  ‘olleh’

How to we write code to do this?

Hint: This is very similar to when we 
produced the mirror image of a 
matrix.

Solution:
Character c should be exchanged with 
character(nc – c) + 1.

for k = 1:length(s)
   r(k) = s(length(s)-k+1); 
end



Strings and characters: Manipulating strings
Given a string s, where

s =  ‘hello’

We’d like to reverse the string to 
obtain

r =  ‘olleh’

How to we write code to do this?

Hint: This is very similar to when we 
produced the mirror image of a 
matrix.

Solution:
Character c should be exchanged with 
character (nc – c) + 1.

for k = 1:length(s)
   r(k) = s(length(s)-k+1); 
end



Strings and characters: Manipulating strings
Given a string s, where

s =  ‘hello’

We’d like to reverse the string to 
obtain

r =  ‘olleh’

How to we write code to do this?

Hint: This is very similar to when we 
produced the mirror image of a 
matrix.

Solution:
Character c should be exchanged with 
character (nc – c) + 1.

n = length(s);

for k = 1:n
   r(k) = s(n-k+1); 
end



Strings and characters: Manipulating strings

Given a string s and a character c, we’d 
like to display the number of times c 
occurs in s.

Examples:

s = ‘mathematics’, c = ‘a’ → display 2. 

How to we write code to do this?

Solution:

count = 0;
for k = 1:length(s)
   if strcmp(s(k), c)
       count = count+1;
   end
end
disp(count)



Strings and characters: Manipulating strings

Given a string s and a character c, we’d 
like to display the number of times c 
occurs in s.

Examples:

s = ‘mathematics’, c = ‘a’ → display 2. 

How to we write code to do this?

Solution:

count = 0;
for k = 1:length(s)
   if strcmp(s(k), c)
       count = count+1;
   end
end
disp(count)



Strings and characters: Manipulating strings

Given a string s and a character c, we’d 
like to display the number of times c 
occurs in s.

Examples:

s = ‘mathematics’, c = ‘a’ → display 2. 

How to we write code to do this?

Solution:

count = 0;
for k = 1:length(s)
   if strcmp(s(k), c)
       count = count+1;
   end
end
disp(count)



Strings and characters: Manipulating strings

Given a string s and a character c, we’d 
like to display the number of times c 
occurs in s.

Examples:

s = ‘mathematics’, c = ‘a’ → display 2. 

How to we write code to do this?

Solution:

count = 0;
for k = 1:length(s)
   if strcmp(s(k), c)
       count = count+1;
   end
end
disp(count)



Strings and characters: Manipulating strings

Given a string s and a smaller string str, 
we’d like to display the number of times 
str occurs in s.

Examples:

s = ‘mathematics’, str = ‘at’ → display 2. 

How to we write code to do this?

Solution:

count = 0;
for k = 1:length(s)-length(str)+1
   if strcmp(s(k : k+length(str)-1), str)
       count = count+1;
   end
end
disp(count)



Fall 2016 Prelim: Question 5a



Fall 2016 Prelim: Question 5a

# Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same 
length as sep

A loop on the index of the leftmost character of 
the substring for left=1:nr-length(sep)+1 (why?)

2 For a given left index, extract substring with same 
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index whenever the substring 
matches sep

Use a variable that appends the left index each 
time the condition is true

Designing an algorithm



Fall 2016 Prelim: Question 5a

# Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same 
length as sep

A loop on the index of the leftmost character of 
the substring 

for left=1:length(str)-length(sep)+1 (why?)

2 For a given left index, extract substring with same 
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index whenever the substring 
matches sep

Use a variable that appends the left index each 
time the condition is true

Designing an algorithm



Fall 2016 Prelim: Question 5a

# Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same 
length as sep

A loop on the index of the leftmost character of 
the substring 

for left=1:length(str)-length(sep)+1 (why?)

2 For a given left index, extract substring with same 
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index whenever the substring 
matches sep

Use a variable that appends the left index each 
time the condition is true

Designing an algorithm



Fall 2016 Prelim: Question 5a

# Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same 
length as sep

A loop on the index of the leftmost character of 
the substring 

for left=1:length(str)-length(sep)+1 (why?)

2 For a given left index, extract substring with same 
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index whenever the substring 
matches sep

Use a variable that appends the left index each 
time the condition is true

Designing an algorithm



Fall 2016 Prelim: Question 5a

# Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same 
length as sep

A loop on the index of the leftmost character of 
the substring 

for left=1:length(str)-length(sep)+1 (why?)

2 For a given left index, extract substring with same 
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index to the output variable 
whenever the substring matches sep

Use a variable that appends the left index each 
time the condition is true

Designing an algorithm



Fall 2016 Prelim: Question 5a

# Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same 
length as sep

A loop on the index of the leftmost character of 
the substring 

for left=1:length(str)-length(sep)+1 (why?)

2 For a given left index, extract substring with same 
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index to the output variable 
whenever the substring matches sep

Append the left to v each time the above 
condition is true

Designing an algorithm



Fall 2016 Prelim: Question 5a
Translating what we need to do into code:

v= []; 
for left = 1 : length(str) – length(sep) + 1
     substr = str(left : left + length(sep) – 1);
     if strcmp( substr, sep ) == 1
          v = [v, left];
     end
end 

Connection to previous slide:
Red: for-loop on left index
Green: use strcmp on substr
Blue: append left index to v



Fall 2016 Prelim: Question 5a
Translating what we need to do into code:

v= []; 
for left = 1 : length(str) – length(sep) + 1
     substr = str(left : left + length(sep) – 1);
     if strcmp( substr, sep ) == 1
          v = [v, left];
     end
end 

Connection to previous slide:
Red: for-loop on left index
Green: use strcmp on substr
Blue: append left index to v



Fall 2016 Prelim: Question 5a
Translating what we need to do into code:

v= []; 
for left = 1 : length(str) – length(sep) + 1
     substr = str(left : left + length(sep) – 1);
     if strcmp( substr, sep ) == 1
          v = [v, left];
     end
end 

Connection to previous slide:
Red: for-loop on left index
Green: use strcmp on substr
Blue: append left index to v



Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars 
together form a string, but a string is not a type – it is just an array of characters. 
Array of characters: s = ‘CS1112’;  s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean.  Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type.  A cell array is a special 
kind of array that can hold data of different types. Yay!



Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars 
together form a string, but a string is not a type – it is just an array of characters. 
Array of characters: s = ‘CS1112’;  s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean.  Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type.  A cell array is a special 
kind of array that can hold data of different types. Yay!



Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars 
together form a string, but a string is not a type – it is just an array of characters. 
Array of characters: s = ‘CS1112’;  s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean.  Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type.  A cell array is a special 
kind of array that can hold data of different types. Yay!



Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars 
together form a string, but a string is not a type – it is just an array of characters. 
Array of characters: s = ‘CS1112’;  s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean.  Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type.  A cell array is a special 
kind of array that can hold data of different types. Yay!



Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars 
together form a string, but a string is not a type – it is just an array of characters. 
Array of characters: s = ‘CS1112’;  s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean.  Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type.  A cell array is a special 
kind of array that can hold data of different types. Yay!



Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars 
together form a string, but a string is not a type – it is just an array of characters. 
Array of characters: s = ‘CS1112’;  s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean.  Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type.  A cell array is a special 
kind of array that can hold data of different types. Yay!



Cell arrays
Arrays (e.g. vectors, matrices, 3-D arrays, etc.)
• Can hold one scalar value in each of its components, 

e.g. one double, one char, one uint8. 
• Data of all components must be the same type

Cell arrays
• Each cell can store something “larger” than a scalar (but doesn’t have to). 

Can store a vector in a single component, or a matrix, or a string, etc.
• Each cell can store something of a different type



Cell arrays
Arrays (e.g. vectors, matrices, 3-D arrays, etc.)
• Can hold one scalar value in each of its components, 

e.g. one double, one char, one uint8. 
• Data of all components must be the same type

Cell arrays
• Each cell can store something “larger” than a scalar (but doesn’t have to). 

Can store a vector in a single component, or a matrix, or a string, etc.
• Each cell can store something of a different type



Cell arrays
Initialize a cell array with cell(…) function c = cell(1,3);

% Cell array with 1 row, 3 columns

Obtain number of rows and columns [nr, nc] = size(c);
% Same as for other arrays

Put items (strings, in this case) into the cell array c = {'matlab', 'is', 'fun'};
% Commas optional

Display first item (string in this example) disp(c{1})
% Note the use of curly braces

Display first two items (vectorized) disp(c(1:2))
% Note the use of parentheses

Display first three letters of first string disp(c{1}(1:3))
% Note the use of curly braces and parentheses

Concatenate the strings (produces ‘matlab is fun’) s = [c{1} ‘ ’ c{2} ‘ ’ c{3}]
% Note the use of square brackets to create a string



Fall 2016 Prelim: Question 5b



Fall 2016 Prelim: Question 5b

# Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string. 

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the 
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the 
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA 
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1 );

4 Knowing the indices of the commas, loop through the 
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates 
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and 
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4, 
then convert the substring to a double and add to the second column.

Designing an algorithm



Fall 2016 Prelim: Question 5b

# Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string. 

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the 
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the 
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA 
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1 );

4 Knowing the indices of the commas, loop through the 
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates 
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and 
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4, 
then convert the substring to a double and add to the second column.

Designing an algorithm



Fall 2016 Prelim: Question 5b

# Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string. 

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the 
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the 
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA 
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1 );

4 Knowing the indices of the commas, loop through the 
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates 
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and 
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4, 
then convert the substring to a double and add to the second column.

Designing an algorithm



Fall 2016 Prelim: Question 5b

# Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string. 

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the 
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the 
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA 
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1 );

4 Knowing the indices of the commas, loop through the 
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates 
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and 
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4, 
then convert the substring to a double and add to the second column.

Designing an algorithm



Fall 2016 Prelim: Question 5b

# Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string. 

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the 
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the 
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA 
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1 );

4 Knowing the indices of the commas, loop through the 
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates 
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and 
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4, 
then convert the substring to a double and add to the second column.

Designing an algorithm



Fall 2016 Prelim: Question 5b

# Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string. 

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the 
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the 
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA 
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1 );

4 Knowing the indices of the commas, loop through the 
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates 
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and 
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4, 
then convert the substring to a double and add to the second column.

Designing an algorithm



Fall 2016 Prelim: Question 5b

# Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string. 

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the 
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the 
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA 
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1 );

4 Knowing the indices of the commas, loop through the 
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates 
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and 
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4, 
then convert the substring to a double and add to the second column.

Designing an algorithm



Fall 2016 Prelim: Question 5b

# Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string. 

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the 
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the 
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA 
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1 );

4 Knowing the indices of the commas, loop through the 
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates 
from k = 1:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and 
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4, 
then convert the substring to a double and add to the second column.

Designing an algorithm



Fall 2016 Prelim: Question 5b

# Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string. 

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the 
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the 
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA 
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1 );

4 Knowing the indices of the commas, loop through the 
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates 
from k = 1:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and 
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4, 
then convert the substring to a double and add to the second column.

Designing an algorithm



Fall 2016 Prelim: Question 5b

# Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string. 

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the 
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the 
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA 
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1 );

4 Knowing the indices of the commas, loop through the 
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates 
from k = 1:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and 
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4, 
then convert the substring to a double and add to the second column.

Designing an algorithm



Fall 2016 Prelim: Question 5b
rowCA = 0; CA = {};
for rowM = 1:size(M,1)
    comma_idx = getIndices( M( rowM , : ) );
    if length(comma_idx) >= 2
        rowCA = rowCA+1;
        CA{ rowCA, 1 } = M( rowM, 1:comma_idx(1)-1 );
        CA{ rowCA, 2 } = 0;
        for k = 1:length(comma_idx)
             left = comma_idx(k)+1;
             if k <= length(comma_idx)
                  right = comma_idx(k+1)-1;
             else
                  right = size(M,2);
             end
             CA{rowCA,2} = CA{rowCA,2} + str2double( M( rowM, left:right ) );
        end
        CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
    end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score



Fall 2016 Prelim: Question 5b
rowCA = 0; CA = {};
for rowM = 1:size(M,1)
    comma_idx = getIndices( M( rowM , : ), ‘,’ );
    if length(comma_idx) >= 2
        rowCA = rowCA+1;
        CA{ rowCA, 1 } = M( rowM, 1:comma_idx(1)-1 );
        CA{ rowCA, 2 } = 0;
        for k = 1:length(comma_idx)
             left = comma_idx(k)+1;
             if k <= length(comma_idx)
                  right = comma_idx(k+1)-1;
             else
                  right = size(M,2);
             end
             CA{rowCA,2} = CA{rowCA,2} + str2double( M( rowM, left:right ) );
        end
        CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
    end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score



Fall 2016 Prelim: Question 5b
rowCA = 0; CA = {};
for rowM = 1:size(M,1)
    comma_idx = getIndices( M( rowM , : ), ‘,’ );
    if length(comma_idx) >= 2
        rowCA = rowCA+1;
        CA{ rowCA, 1 } = M( rowM, 1:comma_idx(1)-1 );
        CA{ rowCA, 2 } = 0;
        for k = 1:length(comma_idx)
             left = comma_idx(k)+1;
             if k <= length(comma_idx)
                  right = comma_idx(k+1)-1;
             else
                  right = size(M,2);
             end
             CA{rowCA,2} = CA{rowCA,2} + str2double( M( rowM, left:right ) );
        end
        CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
    end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score



Fall 2016 Prelim: Question 5b
rowCA = 0; CA = {};
for rowM = 1:size(M,1)
    comma_idx = getIndices( M( rowM , : ), ‘,’ );
    if length(comma_idx) >= 2
        rowCA = rowCA+1;
        CA{ rowCA, 1 } = M( rowM, 1:comma_idx(1)-1 );
        CA{ rowCA, 2 } = 0;
        for k = 1:length(comma_idx)
             left = comma_idx(k)+1;
             if k < length(comma_idx)
                  right = comma_idx(k+1)-1;
             else
                  right = size(M,2); % After last comma, take all remaining characters
             end
             CA{rowCA,2} = CA{rowCA,2} + str2double( M( rowM, left:right ) );
        end
        CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
    end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score



Fall 2016 Prelim: Question 5b
rowCA = 0; CA = {};
for rowM = 1:size(M,1)
    comma_idx = getIndices( M( rowM , : ), ‘,’ );
    if length(comma_idx) >= 2
        rowCA = rowCA+1;
        CA{ rowCA, 1 } = M( rowM, 1:comma_idx(1)-1 );
        CA{ rowCA, 2 } = 0;
        for k = 1:length(comma_idx)
             left = comma_idx(k)+1;
             if k < length(comma_idx)
                  right = comma_idx(k+1)-1;
             else
                  right = size(M,2); % After last comma, take all remaining characters
             end
             CA{rowCA,2} = CA{rowCA,2} + str2double( M( rowM, left:right ) );
        end
        CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
    end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score



Structures and Structure Arrays
•

•

•

•

•

•
•



Structures and Structure Arrays
•

•

•

•

•

•
•



Structures and Structure Arrays
•

•

•

•
•

•
•



Structures and Structure Arrays
•

•

•
•

•





Spring 2016 Prelim: Question 4



Spring 2016 Prelim: Question 4

# Thing we need to do Programming concept needed to do this thing

1 Loop through all possible three city combinations. Use the 
fact that order does not matter to minimize redundancy

A triple nested for loop. Since the order of the cities does not matter, 
we should set up the loops so that the indices are in increasing order
for city1 = 1:n-2      for city2 = city1+1:n-1     for city3 = city2+1:n

2 Compute the distance of the itinerary and determine if the 
budget should be calculated 

Use an if statement on the total distance
D(city1,city2)+D(city2,city3)+D(city3,city1)

3 If the itinerary is valid, compute the current budget and 
compare to the max budget so far

Compute budget of current itinerary by accessing the structure array
curBudget = S(city1).budget + S(city2).budget + S(city3).budget

Initialize a maxBudgetSoFar and use an if statement comparing it to 
the budget of the current itinerary

4 If the current budget exceeds the max so far, then update 
the cell array R with information from S

R{1} = S(city1).cname;
R{2} = S(city2).cname;
R{3} = S(city3).cname;

R{4} = curBudget

Designing an algorithm



Spring 2016 Prelim: Question 4

# Thing we need to do Programming concept needed to do this thing

1 Loop through all possible three city combinations. Use the 
fact that order does not matter to minimize redundancy

A triple nested for loop. Since the order of the cities does not matter, 
we should set up the loops so that the indices are in increasing order

for city1 = 1:n-2      
              for city2 = city1+1:n-1     
                for city3 = city2+1:n

2 Compute the distance of the itinerary and determine if the 
budget should be calculated 

Use an if statement on the total distance
D(city1,city2)+D(city2,city3)+D(city3,city1)

3 If the itinerary is valid, compute the current budget and 
compare to the max budget so far

Compute budget of current itinerary by accessing the structure array
curBudget = S(city1).budget + S(city2).budget + S(city3).budget

Initialize a maxBudgetSoFar and use an if statement comparing it to 
the budget of the current itinerary

4 If the current budget exceeds the max so far, then update 
the cell array R with information from S

R{1} = S(city1).cname;
R{2} = S(city2).cname;
R{3} = S(city3).cname;

R{4} = curBudget

Designing an algorithm



Spring 2016 Prelim: Question 4

# Thing we need to do Programming concept needed to do this thing

1 Loop through all possible three city combinations. Use the 
fact that order does not matter to minimize redundancy

A triple nested for loop. Since the order of the cities does not matter, 
we should set up the loops so that the indices are in increasing order

for city1 = 1:n-2      
              for city2 = city1+1:n-1     
                for city3 = city2+1:n

2 Compute the distance of the itinerary and determine if the 
budget should be calculated 

Use an if statement on the total distance
D(city1,city2)+D(city2,city3)+D(city3,city1)

3 If the itinerary is valid, compute the current budget and 
compare to the max budget so far

Compute budget of current itinerary by accessing the structure array
curBudget = S(city1).budget + S(city2).budget + S(city3).budget

Initialize a maxBudgetSoFar and use an if statement comparing it to 
the budget of the current itinerary

4 If the current budget exceeds the max so far, then update 
the cell array R with information from S

R{1} = S(city1).cname;
R{2} = S(city2).cname;
R{3} = S(city3).cname;

R{4} = curBudget

Designing an algorithm



Spring 2016 Prelim: Question 4

# Thing we need to do Programming concept needed to do this thing

1 Loop through all possible three city combinations. Use the 
fact that order does not matter to minimize redundancy

A triple nested for loop. Since the order of the cities does not matter, 
we should set up the loops so that the indices are in increasing order

for city1 = 1:n-2      
              for city2 = city1+1:n-1     
                for city3 = city2+1:n

2 Compute the distance of the itinerary and determine if the 
budget should be calculated 

Use an if statement on the total distance
D(city1,city2)+D(city2,city3)+D(city3,city1)

3 If the itinerary is valid, compute the current budget and 
compare to the max budget so far

Compute budget of current itinerary by accessing the structure array
curBudget = S(city1).budget + S(city2).budget + S(city3).budget

Initialize a maxBudgetSoFar and use an if statement comparing it to 
the budget of the current itinerary

4 If the current budget exceeds the max so far, then update 
the cell array R with information from S

R{1} = S(city1).cname;
R{2} = S(city2).cname;
R{3} = S(city3).cname;

R{4} = curBudget

Designing an algorithm



Spring 2016 Prelim: Question 4

# Thing we need to do Programming concept needed to do this thing

1 Loop through all possible three city combinations. Use the 
fact that order does not matter to minimize redundancy

A triple nested for loop. Since the order of the cities does not matter, 
we should set up the loops so that the indices are in increasing order

for city1 = 1:n-2      
              for city2 = city1+1:n-1     
                for city3 = city2+1:n

2 Compute the distance of the itinerary and determine if the 
budget should be calculated 

Use an if statement on the total distance
D(city1,city2)+D(city2,city3)+D(city3,city1)

3 If the itinerary is valid, compute the current budget and 
compare to the max budget so far

Compute budget of current itinerary by accessing the structure array
curBudget = S(city1).budget + S(city2).budget + S(city3).budget

Initialize a maxBudgetSoFar and use an if statement comparing it to 
the budget of the current itinerary

4 If the current budget exceeds the max so far, then update 
the cell array R with information from S

R{1} = S(city1).cname;
R{2} = S(city2).cname;
R{3} = S(city3).cname;

R{4} = curBudget

Designing an algorithm



Spring 2016 Prelim: Question 4

# Thing we need to do Programming concept needed to do this thing

1 Loop through all possible three city combinations. Use the 
fact that order does not matter to minimize redundancy

A triple nested for loop. Since the order of the cities does not matter, 
we should set up the loops so that the indices are in increasing order

for city1 = 1:n-2      
              for city2 = city1+1:n-1     
                for city3 = city2+1:n

2 Compute the distance of the itinerary and determine if the 
budget should be calculated 

Use an if statement on the total distance
D(city1,city2)+D(city2,city3)+D(city3,city1)

3 If the itinerary is valid, compute the current budget and 
compare to the max budget so far

Compute budget of current itinerary by accessing the structure array
curBudget = S(city1).budget + S(city2).budget + S(city3).budget

Initialize a maxBudgetSoFar and use an if statement comparing it to 
the budget of the current itinerary

4 If the current budget exceeds the max so far, then update 
the cell array R with information from S

R{1} = S(city1).cname;
R{2} = S(city2).cname;
R{3} = S(city3).cname;

R{4} = curBudget

Designing an algorithm



Spring 2016 Prelim: Question 4

# Thing we need to do Programming concept needed to do this thing

1 Loop through all possible three city combinations. Use the 
fact that order does not matter to minimize redundancy

A triple nested for loop. Since the order of the cities does not matter, 
we should set up the loops so that the indices are in increasing order

for city1 = 1:n-2      
              for city2 = city1+1:n-1     
                for city3 = city2+1:n

2 Compute the distance of the itinerary and determine if the 
budget should be calculated 

Use an if statement on the total distance
D(city1,city2)+D(city2,city3)+D(city3,city1)

3 If the itinerary is valid, compute the current budget and 
compare to the max budget so far

Compute budget of current itinerary by accessing the structure array
curBudget = S(city1).budget + S(city2).budget + S(city3).budget

Initialize a maxBudgetSoFar and use an if statement comparing it to 
the budget of the current itinerary

4 If the current budget exceeds the max so far, then update 
the cell array R with information from S

R{1} = S(city1).cname;
R{2} = S(city2).cname;
R{3} = S(city3).cname;

R{4} = curBudget

Designing an algorithm



Spring 2016 Prelim: Question 4

# Thing we need to do Programming concept needed to do this thing

1 Loop through all possible three city combinations. Use the 
fact that order does not matter to minimize redundancy

A triple nested for loop. Since the order of the cities does not matter, 
we should set up the loops so that the indices are in increasing order

for city1 = 1:n-2      
              for city2 = city1+1:n-1     
                for city3 = city2+1:n

2 Compute the distance of the itinerary and determine if the 
budget should be calculated 

Use an if statement on the total distance
D(city1,city2)+D(city2,city3)+D(city3,city1)

3 If the itinerary is valid, compute the current budget and 
compare to the max budget so far

Compute budget of current itinerary by accessing the structure array
curBudget = S(city1).budget + S(city2).budget + S(city3).budget

Initialize a maxBudgetSoFar and use an if statement comparing it to 
the budget of the current itinerary

4 If the current budget exceeds the max so far, then update 
the cell array R with information from S

R{1} = S(city1).cname;
R{2} = S(city2).cname;
R{3} = S(city3).cname;

R{4} = curBudget

Designing an algorithm



Spring 2016 Prelim: Question 4
n = length(S);
maxBudgetSoFar = 0;
R = { };
for city1 = 1:n-2
    for city2 = city1+1:n-1
        for city3 = city2+1:n
            dist = D(city1,city2)+D(city2,city3)+D(city3,city1);
            if dist >= 100 && dist <= 200
                curBudget = S(city1).budget + S(city2).budget + S(city3).budget;
                if curBudget > maxBudgetSoFar
                    R{1} = S(city1).cname;
                    R{2} = S(city2).cname;
                    R{3} = S(city3).cname;
                    R{4} = curBudget;
                end
            end
        end
    end
end

Connection to previous slide:
Red: for-loops across all itineraries
Orange: compute and compare distance
Green: compute and compare budget
Blue: store in R the max budget so far



Spring 2016 Prelim: Question 4
n = length(S);
maxBudgetSoFar = 0;
R = { };
for city1 = 1:n-2
    for city2 = city1+1:n-1
        for city3 = city2+1:n
            dist = D(city1,city2)+D(city2,city3)+D(city3,city1);
            if dist >= 100 && dist <= 200
                curBudget = S(city1).budget + S(city2).budget + S(city3).budget;
                if curBudget > maxBudgetSoFar
                    R{1} = S(city1).cname;
                    R{2} = S(city2).cname;
                    R{3} = S(city3).cname;
                    R{4} = curBudget;
                end
            end
        end
    end
end

Connection to previous slide:
Red: for-loops across all itineraries
Orange: compute and compare distance
Green: compute and compare budget
Blue: store in R the max budget so far



Spring 2016 Prelim: Question 4
n = length(S);
maxBudgetSoFar = 0;
R = { };
for city1 = 1:n-2
    for city2 = city1+1:n-1
        for city3 = city2+1:n
            dist = D(city1,city2)+D(city2,city3)+D(city3,city1);
            if dist >= 100 && dist <= 200
                curBudget = S(city1).budget + S(city2).budget + S(city3).budget;
                if curBudget > maxBudgetSoFar
                    R{1} = S(city1).cname;
                    R{2} = S(city2).cname;
                    R{3} = S(city3).cname;
                    R{4} = curBudget;
                end
            end
        end
    end
end

Connection to previous slide:
Red: for-loops across all itineraries
Orange: compute and compare distance
Green: compute and compare budget
Blue: store in R the max budget so far



Spring 2016 Prelim: Question 4
n = length(S);
maxBudgetSoFar = 0;
R = { };
for city1 = 1:n-2
    for city2 = city1+1:n-1
        for city3 = city2+1:n
            dist = D(city1,city2)+D(city2,city3)+D(city3,city1);
            if dist >= 100 && dist <= 200
                curBudget = S(city1).budget + S(city2).budget + S(city3).budget;
                if curBudget > maxBudgetSoFar
                    R{1} = S(city1).cname;
                    R{2} = S(city2).cname;
                    R{3} = S(city3).cname;
                    R{4} = curBudget;
                end
            end
        end
    end
end

Connection to previous slide:
Red: for-loops across all itineraries
Orange: compute and compare distance
Green: compute and compare budget
Blue: store in R the max budget so far



Common Student Errors
● Getting the size of an array/Initializing arrays

size(A) = [nr, nc]; vs [nr, nc] = size(A);
● For loops based on array size

for k = 1:length(nr) vs for k = 1:nr
● Accessing struct arrays

SA.x(1)                                           vs          SA(1).x
● Initializing structs

s = struct(‘vec’, [1,2,3,4,5], ‘num’, 6, ‘string’, ‘Hello’)
● 2D Cell Array vs. Arrays in Cells

A{1, 2} A{1}(2)

{1, 2, 3; {[1, 2, 3],
 4, 5, 6}  [4, 6]}

has 6 cells has 2 cells


