s Previous lecture

s User-defined functions
= Function header
= Input parameters and return variables

s Today’s lecture

= User-defined functions
= local memory space
= Subfunction

= |-dimensional array and plot

= Announcement

s Discussion this week in classrooms as listed in Student
Center

= Make use of consulting/office hours

Lecture 9

General form of a user-defined function

function [outl, out2, ...]= functionName (inl, in2, ...)
% |-line comment to describe the function
% Additional description of function

Executable code that at some point assigns
values to output parameters outl, out2, ...

m inl,in2, ... are defined when the function begins execution.
Variables inl, in2, ... are called function parameters and they hold
the function arguments used when the function is invoked (called).

m outl, out2, ... are not defined until the executable code in the
function assigns values to them.

Lecture 9 4

Returning a value # printing a value

You have this function:
function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y). Theta in degrees.

Code to call the above function:

Lecture 9 5

Returning a value # printing a value

You have this function:

function W polar2xy(r, theta)

% Convert polar coordinates (r,theta) to

% Cartesian coordinates (Xx,y). Theta in degrees.

Stk CORE, eaf)\ %y

Code 1o call the above function:
% Convert polar (rl,tl) to Cartesian (x1,yl)

rl=1; tl= 30;
— ° /
Wyﬂ;polar2xy(rl.tl), o et the

el y 1, %) | Now, ool V78 R
. A s SCr
@vajfzéu- \i%@ \ P

U ———

 ——

e

Lecture 9 6

Given this function:
function m =

convertLength(ft,in)
% Convert length from feet (ft) and i1nches (iIn)
% to meters (m).

How many proper calls to convertLength are shown below?
% Given T and n

d= convert
d= convert
d= convert

_engt
_engt
_engt

n(F,n);
N(F*12+n);

N(F+n/12);

x= min(convertLength(f,n), 1);
y= convertLength(pi*(f+n/12)"2);

Lecture 9 7

Comments in functions

m Block of comments after the function header is
printed whenever a user types

help <functionName>
at the Command Window

m |5t |ine of this comment block is searched whenever a
user types

lookfor <someWord>
at the Command Window

> = Every function should have a comment block after the

function header that says what the function does
concisely

Lecture 9 8

Accessing your functions

For now™, put your related functions and scripts
in the same directory.

MyDirectory
dotsInRINngs.m polar2xy.m
randDouble.m drawColorDot.m

Any script/function that
calls polar2xy.m

*The path function gives greater flexibility

Lecture 9

Why write user-defined function?

- Easy code re-use—great for “common” tasks
- A function can be tested independently easily

- Keep a driver program clean by keeping detail
code in functions—separate, non-interacting
files

j> Facilitate top-down design

Lecture 9 10

c= 1nput("How many concentric rings? ");
d= input("How many dots? ");

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1l:c

% Draw d dots

for count= 1:d

% Generate random dot location (polar coord.)
theta=
=

% Convert from polar to Cartesian
X=
Y= Each task becomes a
% Use plot to draw dot '.fLmCTlOn that can be
end implemented and
end tested independently

Lecture 9 12

Facilitates top-down design

|. Focus on how to draw the figure given just a
specification of what the function DrawStar

does.

2. Figure out how to implement DrawStar.

To specify a function...

... You describe how to use it, e.g.,

function DrawStar(xc,yc,r,C)

% Adds a 5-pointed star to the

% figure window. Star has radius r,
% center(xc,yc) and color c where c

% 1s one of "r*, "g", °"y", etc.

Given the specification, the user of the
function doesn't need to know the detail
of the function—they can just use it!

To implement a function...

... you write the code so that the function “lives up to” the
specification. E.g.,

r2 = r/(2*(1+sin(pi/10)));
for k=1:11
theta = (2*k-1)*p1/10;
1T 2*floor(k/2)~=k

X(k) = xc + r*cos(theta);
y(k) = yc + r*sin(theta);
else
X(k) = xc + r2*cos(theta);
y(k) = yc + r2*sin(theta); "\ \earn
end Son't W OYW/VOL\‘?\CS
end O rap
fill(x,y,c) more abod d yectors
FUNCEONS an

Why write user-defined function?

Easy code re-use—great for “common” tasks
- A function can be tested independently easily

- Keep a driver program clean by keeping detail

code in functions—separate, non-interacting
files

- Facilitate top-down design

:> Software management

Lecture 9 19

Software Management

Today:

| write a function
EPerimeter(a,b)

that computes the perimeter of the ellipse

HEGR

Software Management

During this year :

You write software that makes extensive use of

EPerimeter(a,b)

Imagine hundreds of programs each with several
lines that reference EPerimeter

Software Management

Next year:

| discover a more efficient way to approximate
ellipse perimeters. | change the implementation of

EPerimeter(a,b)

You do not have to change your software at all.

whaewil be princes? - |[ATE3]] B3] [[Coerror]

% Script file function q = absolute(p)
= -3; % q 1s absolute value of p
g= absolute(p); it (p<0)
disp(p) p= -p;
end
a= P,

Lecture 9 25

What will be printed?

% Script file function q = absolute(p)
»p= -3; % q is the absolute value of p
q= absolute(p); if (p<0)
di _
isp(p) p= -p;
end
9= P;

Command Window Workspace

Lecture 9

What will be printed?

% Script file
p=-3;

q= absolute(p);
disp(p)

v

Command Window Workspace

function q = absolute(p)
% q is the absolute value of p
f (p<0)
P= -P;
end

9= p;

Lecture 9

28

What will be priy@d’.’/ \
A\

% Script file ‘function q= absoluteﬁa)
p= -3; % q is the absolute value of p
:.q= absolute(p); if (p<0)
di —
isp(p) p= -p;
end
9= P;

Function absolute’s Workspace

Lecture 9 29

What will be priy@d’.’/ \
A\

% Script file ‘function q= absoluteﬁa)
p= -3; % q is the absolute value of p
:.q= absolute(p); if (p<0)
di —
isp(p) p= -p;
end
9= P;

Function absolute’s Workspace

-3 Pl -3

Lecture 9 30

What will be priy@d’.’/ \
A\

% Script file ‘function q= absoluteﬁa)
p= -3; % q is the absolute value of p
:.q= absolute(p); if (p<0)
di —
isp(p) p= -p;
end
9= P;

Function absolute’s Workspace

Pl -3

Lecture 9 31

What will be printed!?

% Script file
p=-3;

:.q= absolute(p);
disp(p)

function q = absolute(p)
% q is the absolute value of p
»if (p<0)
P=-P;
end

9= p;

Function absolute’s Workspace

Pl -3

Lecture 9

32

What will be printed!?

% Script file
p=-3;

:.q= absolute(p);
disp(p)

function q = absolute(p)

% q is the absolute value of p
f (p<0)

» P~ -p

end

9= p;

Function absolute’s Workspace

Pl 3

Lecture 9

33

What will be printed!?

% Script file
p=-3;

:.q= absolute(p);
disp(p)

function q = absolute(p)
% q is the absolute value of p
f (p<0)
P=-P;
end

»q= p;

Function absolute’s Workspace

Pl 3
q 3

Lecture 9

34

What will be printed!?

% Script file w = absolute(p)
p=-3; —T7% q is the absolute value of p
1qQ= abso|Ut3@’/ if (p<0)
di _
isp(p) p= -p;
end
Salz

Function absolute’s Workspace

P 3
q 3

Lecture 9

What will be printed?

% Script file —':Jw = absolute(p)
p=-3; —T% q is the absolute value of p
b= absolutele | |if (o)
di _
isp(p) p= -p;
end
=P
Command Window Workspace Function absolute’s Workspace

P 3
q 3

Lecture 9

What will be printed?

% Script file
p=-3;

q= absolute(p);
disp(p)

v

Command Window Workspace

function q = absolute(p)
% q is the absolute value of p
f (p<0)
P= -P;
end

9= p;

Lecture 9

37

What will be printed?

% Script file function q = absolute(p)
p= -3; % q is the absolute value of p
q= absolute(p); if (p<0)
pdisp(p) p= -p;
end
9= P

Command Window Workspace

Lecture 9

REVIEW!! / \

% Script file ‘function q= absolute?:)
p=-3; % q is the absolute value of p
-t.q= absolute(p); :
'”’ ji sp(p)) t (P_<O). A value is passed to
P~ -P; the function
end parameter when the
q= p; function is called.

Functiof The two variables,
both called p, live in
different memory

space and do not
interfere.

Lecture 9 39

REVIEWI!!

| When a function |
reaches the end

% Script file
p=-3;

hq= absolutaép‘)‘,/

disp(p)

Command Window Workspace

function g = absol of execution (and
Mabsolut reiur:‘_s the H
. output argument),
< °
" (P_) the function
P~ -P; space—local
end space—is deleted.

Sl

Function absolute’s Workspace

Lecture 9 40

What is the output?

1;

= f(x+1);
X+1;
1sp(y)

o< X X
|l

function y = f(X)
X = X+1;
y = X+1;

41

What is the output?

!
X = 1;
x = F(x+1); function y = f(X)
y = X+1; X = X+1;
disp(y) y = x+l;

Execute the statement Y= foo(X)

= Matlab looks for a function called foo (m-file called
foo.m)

= Argument (value of x) is copied into function foo’s local
parameter

= called “pass-by-value,” one of several argument passing
schemes used by programming languages

= Function code executes within its own workspace

= At the end, the function’s output argument (value) is
sent from the function to the place that calls the
function. E.g., the value is assigned to y.

» Function’s workspace is deleted
s If foo is called again, it starts with a new, empty workspace

Lecture 9 43

Subfunction

m | here can be more than one function in an M-file

= top function is the main function and has the name of
the file

= remaining functions are subfunctions, accessible only by
the functions in the same m-file

= Each (sub)function in the file begins with a function
header

= Keyword end is not necessary at the end of a
(sub)function

Lecture 9 46

