CS1112 Lecture 8

= Previous Lecture:
= Nested loops
= Developing algorithms and code

= Today’s Lecture:
= Review nested loops
= User-defined functions

= Announcements:
= Project 2 due Thursday at | Ipm

= Final exam will be on Dec 7 at 2pm ONLY for both Lec|
and Lec2. The second exam date posted on the
University exam calendar is wrong.

9/14/2016

Rational approximation of 7T

= 7 =3.141592653589793...

= Can be closely approximated by fractions,
e.g., m~22/7

= Rational number: a quotient of two integers

= Approximate 1 as p/q where p and q are positive
integers <M

= Start with a straight forward solution:
= Get M from user
= Calculate quotient p/q for all combinations of p and q
= Pick best quotient > smallest error

Lecture 8 3

% Rational approximation of pi

M = input(“Enter M: *);

% Check all possible denominators
for g = 1:M

For current q find best numerator p...
Check all possible numerators

end

% Rational approximation of pi

M = input(“Enter M: *);

% Best g, p, and error so far
gBest=1; pBest=1;

err_pq = abs(pBest/gBest - pi);

% Check all possible denominators

for g = 1:M
% At this g, check all possible numerators
for p = 1:M

end
end

myPi = pBest/gBest;

% Rational approximation of pi

M = input(“Enter M: *);

% Best g, p, and error so far
gBest=1; pBest=1;

err_pq = abs(pBest/qBest - pi);

% Check all possible denominators
for g = 1:M
% At this q, check all possible numerators
for p = 1:M
if abs(p/q - pi) < err_pq % best p/q found
err_pq = abs(p/q - pi);
pBest= p;
qgBest= q;
end
end
end

myPi = pBest/qgBest;

Lecture slides

% Complicated version in the book

M = input(“Enter M: *);

% Best g, p, and error so far
qBest=1; pBest=1;

err_pq = abs(pBest/gBest - pi);

% Check all possible denominators
for g = 1:M
% At this g, check all possible numerators
p0=1; eO=abs(p0/q - pi); % best p & error for this g
for p = 1:M
it abs(p/q - pi) < e0 % new best numerator found
pO=p; €0 = abs(p/q - pi);
end
end
% Is best quotient for this g is best over all?
if e0 < err_pq
pBest=p0; qBest=q; err_pqg=e0;
end
end
myPi = pBest/gBest;

CS1112 Lecture 8

% Rational approximation of pi

M = input(“Enter M: *);

% Best g, p, and error so far
gBest=1; pBest=1;

err_pq = abs(pBest/gBest - pi);

% Check all possible denominators
for g = 1:M
% At this q, check all possible numerators
for p = 1:M
if abs(p/g - pi) < err_pq % best p/q found
err_pq = abs(p/q - pi);

9/14/2016

Zggz}; z Algorithm: Finding the best in a set

end
end
end

Init bestSoFar
Loop over set
if current is better than bestSoFar
bestSoFar < current
end
end

myPi = pBest/gBest;

Analyze the program for efficiency

= See Eg3_|I and FasterEg3_1 in the book

for a = 1:n How many times are “alpha”
disp(“alpha”) and “beta” displayed?
for b = 1:m
disp(“beta”)
end
end

Lecture 8 12

Built-in functions

= We've used many Matlab built-in functions, e.g.,
rand, abs, floor, rem

= Example: abs(x-.5)

= Observations:
= abs is set up to be able to work with any valid data
= abs doesn’t prompt us for input; it expects that we

provide data that it’'ll then work on

= abs returns a value that we can use in our program

yDistance= abs(y2-yl);
while abs(myPi-pi) > .0001

Lecture 8 14

User-defined functions

= We can write our own functions to perform a
specific task

= Example: draw a disk with specified radius, color, and
center coordinates

= Example: generate a random floating point number in
a specified interval

= Example: convert polar coordinates to x-y
(Cartesian) coordinates

Lecture 8 15

Draw a bulls eye figure with randomly placed dots

= Dots are randomly placed
within concentric rings

= User decides how many
rings, how many dots

Lecture 8 17

Lecture slides

Draw a bulls eye figure with randomly placed dots

= What are the main tasks?

= Accommodate variable number
of rings—loop

= For each ring
= Need many dots
= For each dot

= Generate random position
= Choose color
= Draw it

Lecture 8 18

CS1112 Lecture 8 9/14/2016

. . c= input(“How many concentric rings? °);
Convert from polar to Cartesian coordinates d= input(*How many dots? *):

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots

for count= 1:d

% Generate random dot location (polar coord.)
theta=
r=

% Convert from polar to Cartesian

Polar coordinates Cartesian coordinates Xf A common task! Create a

Y function polar2xy to do

% Use plot to draw dot |this. polar2xy likely will
end be useful in other problems

end as well.

Lecture 8 19 Lecture 8 20

c= input(“How many concentric rings? ");
d= input(“How many dots? "); -
function [x, yl = polar2xy(r,theta)
% Put dots btwn circles with radii rRing and (rRing-1) % Convert polar coordinates (r,theta) to
four rrRing= 1:c % Cartesian coordinates (X,Y)-
% Draw d dots % theta is in degrees.
for count= 1:d) “,{-\\e
_ 2 . . ko
% Generate random dot location (polar coord.) rads= theta*pi/180; % radian P‘mla;?.?“] =
theta= x= r*cos(rads); P°
r=__ y= r*sin(rads);
% C t i lar to Cartesi)
) ~onvert from pofar to tartestan Think of polar2xy as a factory
N [x,y] = polar2xy(r,theta);
% Use plot to draw dot r
end theta
end
Lecture 8 21
function [x, y] = polar2xy(r,theta) function [x, y] = polar2xy(r,theta)
% Convert polar coordinates , a) to
% Cartesian coordinates (X,Yy)-
% theta is in degrees. Input parameter
Function name list enclosed in

on fle

rads= theta*pi/180; % radian i\,\“c“ o (This file’s name is ()
X= r*cos(rads); A 1312}01' polar2xy.m)
y= r*sin(rads); »°
Output
parameter list
r= input(“Enter radius: *); enclosed in []

theta= input(“Enter angle in degrees: ’);

rads= theta*pi/180; % radian
X= r*cos(rads);
y= r*sin(rads);

of) 2

(Paﬁ fle

scf\Q‘

Lecture 8 a1

Lecture slides 3

CS1112 Lecture 8 9/14/2016

Function header is the “contract” for how the function will be used (called)

You have this function:
function [x, y] = polar2xy(r, theta) dotsInRings.m
% Convert polar coordinates (r, theta) to

% Cartesian coordinates (x,y). Theta in degrees. (functions with multiple input parameters)

(functions with a single output parameter)

Code to call the above function: (functions with multiple output parameters)
% Convert polar (rl,tl) to Cartesian (xI,yl)

rl=1; tl=30;
[xI,yl]= polar2xy(rl, tl);
plot(xl,yl,‘b*)

(functions with no output parameter)

Lecture 8 3 Lecture 8 3

General form of a user-defined function Returning a value # printing a value

function [out/, out2, ...]= functionName (inl, in2, ...) You have this function:

% 1-line comment to describe the function function [x, y] = polar2xy(r, theta)

% Additional description of function % Convert polar coordinates (r,theta) to

% Cartesian coordinates (x,y). Theta in degrees.
Executable code that at some point assigns
values to output parameters outl, out2, ...

Code to call the above function:

% Convert polar (rl,tl) to Cartesian (x1,yl)
= inl,in2, ... are defined when the function begins execution.

Variables inl, in2, ... are called function parameters and they hold ri=1; tl=30;
the function arguments used when the function is invoked (called). [x1,y1]= polar2xy(rl, tl);
= outl, out2, ... are not defined until the executable code in the aep
function assigns values to them. plot(xI,yl,b*)
Lecture 8 36 37
Comments in functions Accessing your functions
» Block of comments after the function header is For now*, put your related functions and scripts

printed whenever a user types in the same directory.

help <functionName> |MyDirecTory

at the Command Window

= Istline of this comment block is searched whenever a dotsInCircles.m polar2xy.m
user types

lookfor <someWord> randDouble.m drawColorDot.m

at the Command Window

|:> = Every function should have a comment block after the
function header that says what the function does

concisel

Any script/function that
calls polar2xy.m

*The path function gives greater flexibility

Lecture 8 3

Lecture slides 4

