CS1112

Lecture 4

= Previous Lecture (and Discussion):
= Branching (if, elseif, else, end)
= Relational operators (<, >=, ==, ~=, ..., etc.)

= Today’s Lecture:
= Logical operators (&&, | |, ~) and “short-circuiting”
= More branching—nesting
= Top-down design

= Announcements:

Project | (Pl) due Thursday at | Ipm

= Submit real .m files (plain text, not from a word processing software
such as Microsoft Word

Register your clicker using the link on the course website

Lecture 4 1

Consider the quadratic function
q(x) =x2+bx+c

on the interval [L , R]:

uls the function strictly increasing in [L , R]?
sWhich is smaller, q(L) or q(R) ?

sWhat is the minimum value of q(x) in [L , R]? ‘

Lecture 4 4

Modified Problem 3

Write a code fragment that prints
“yes” if xc is in the interval and “no”
if it is not.

Lecture 4 6

q(x) = x> +bx+c o X, =—h/2

Lecture 4 7

So what is the requirement?
% Determine whether xc is in
% [L,R]
Xc = -b/2;

it

disp(“Yes?)
else

disp(“No”)
end

Lecture 4 10

The value of a boolean expression is either true or false.
(L<=xc) && (xc<=R)

This (compound) boolean expression is made up
of two (simple) boolean expressions. Each has a
value that is either true or false.

Connect boolean expressions by boolean
operators:
and or not

&& |1 =

Lecture 4 12

Lecture slides

CS1112 Lecture 4

Logical operators

&& logical and: Are both conditions true?
E.g., weask “is L<x and x,<R?”
In our code: L<=xc && Xc<=R

|| logical or: Is at least one condition true?
E.g., we can ask if X, is outside of [L,R],
ie, “isx;<LorR<x.?
In code: xc<L |] R<xc

~ logical not: Negation
E.g., we can ask if X, is not outside [L,R].
In code: ~(xc<L || R<xc)

Lecture 4 16

“Truth table”

X, Y represent boolean expressions.
E.g., d>3.14

X | Y | x&&Yy | XY ~Y

“and” “or” “not”

F | F

FIT

T|F

T T

Logical operators “short-circuit”

A && expression short-
a>b && c>d circuits to false if the left

2=
true operand evaluates to false.

A || expression short-circuits
a>b && c>d

Nl to if

false

Entire expression is false since
the first part is false

Always use logical operators to connect simple
boolean expressions

Why is it wrong to use the expression
L <= xc <= R
for checking if X is in [L,R]?

Example: Suppose L is 5, R is 8, and XC is 10. We know
that 10 is not in [5,8], but the expression
L <= xXc <= R gives...

Variables a, b, and ¢ have whole number
values. True or false: This fragment prints
“Yes” if there is a right triangle with side
lengths a, b, and c and prints “No” otherwise.

it a”2 + b2 == c"2

disp(“Yes?) —
else | A true |
disp(“No™) | B: faise |

end

Consider the quadratic function
q(x)=x2+bx+c

on the interval [L , R]:

uls the function strictly increasing in [L , R]?
sWhich is smaller, q(L) or q(R) ?

sWhat is the minimum value of q(x) in [L , R]? ‘

Lecture slides

CS1112 Lecture 4

q(x) = x* +bx+c o X, =—h/2
min at R
I%
1 1 X

L R

Lecture 4 £

Start with pseudocode

If xc is between L and R
Min is at xc
Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can
choose to work with any piece next: the if-else
construct/condition, min at xc, or min at an endpoint

Set up structure first: if-else, condition

if L<=xc && xc<=R

Then min is at xc

else
Min is at one of the endpoints
end

Now refine our solution-in-progress. I'll choose to work on the

Refinement: filled in detail for task “min at xc”

if L<=xc && xc<=R
% min is at xc
gMin= xc”2 + b*xc + c;

else

Min is at one of the endpoints

end

Continue with refining the solution... else-branch next

if-branch next

Refinement: detail for task “min at an endpoint”

if L<=xc && xc<=R
% min Is at xc
gMin= xc"2 + b*xc + c;
else
% min is at one of the endpoints
if % xc left of bracket
% min is at L
else % xc right of bracket
% min is at R
end
end

Continue with the refinement, i.e., replace comments with code

Final solution (given b,c,L,R,xc)

if L<=xc && xc<=R
% min is at xc
gMin= xc”"2 + b*xc + c;

Lecture slides

else
% min is at one of the endpoints
if xc <L
gMin= L"2 + b*L + c;)
else)\
gMin= R*2 + b*R + c; /d\(coﬂ _
— C
end V/%’Sw)fe“_\“cbm“.“ of
end Tand rw\’(\‘“ oxnes W
apPeye o _—
ust W
See quadMin.m 5’(0’(@“\/ -
quadMinGraph.m -

CS1112 Lecture 4

if L<=xc && xc<=R
% min is at xc
gMin= xc”2+b*xc+c;

else
% min at one endpt
if xc <L
gMin= L"2+b*L+c;
else
gMin= R"2+b*R+c;
end
end

Notice that there are 3 alternatives=>can use elseif!

if L<=xc && xc<=R

% min is at xc

gMin= xc”2+b*xc+c;
elseif xc < L

gMin= L"2+b*L+cC;
else

gMin= RN2+b*R+C;
end

Lecture 4

Top-Down Design
‘ State problem ‘
'

Define inputs

& outputs o
1 -

Design algorithm u

! v —

/| Convert algorithm

. to program

Decomposition

Stepwise
refinement

An algorithm is an idea. To use an algorithm you must choose a
programming language and implement the algorithm.

Lecture 4

if score>55
disp(“D?)
elseif score>65
disp(“C”)
elseif score>80
disp(“B?)
elseif score>93
disp(“A?)
else

end

Does this program work?

score= input(“Enter score: ”);

disp(“Not good..”)

Lecture 4

Lecture slides

