
CS1112 Lecture 3

Lecture slides 1

 Previous Lecture (and lab):
 Variables & assignment
 Built-in functions
 Input & output
 Good programming style (meaningful variable

names; use comments)

 Today’s Lecture:
 Branching (conditional statements)

Announcements:
 Discussion section this week in Hollister 464 computer lab
 Project 1 (P1) due Thurs, 9/1, at 11pm
 Pay attention to Academic Integrity
 You can see any TA for help, not just your discussion TA
 Matlab consultants at ACCEL Green Rm (Carpenter Hall 2nd fl.

computing facility) 5-10pm Sunday to Thursday
 Piazza – “Q & A system” for all students in CS1112. Use it for

clarification only—do not ask (answer) homework questions
and do not give hints on homework. Will be monitored by
TAs.

 Please register your clicker using the link on the course website
(redirected to Cornell IT)—not through Blackboard

 Remote MATLAB access: newly joined students will have
accounts tomorrow

Lecture 3 3

Quick review

 Variable
 A named memory space to store a value

 Assignment operator: =
 Let x be a variable that has a value. To give variable y the same

value as x, which statement below should you write?
x = y or y = x

 Script (program)
 A sequence of statements saved in an m-file

 ; (semi-colon)
 Suppresses printing of the result of assignment statement

Lecture 3 4

 So far, all the statements in our scripts are
executed in order

 We do not have a way to specify that some
statements should be executed only under some
condition

 We need a new language construct…

Lecture 3 5

Consider the quadratic function

q(x) = x2 + bx + c

on the interval [L , R]:

Is the function strictly increasing in [L , R]?
Which is smaller, q(L) or q(R) ?
What is the minimum value of q(x) in [L , R]?

x

q(x)

Lecture 3 7

 What are the critical points?
 End points: x = L , x = R

 { x | q’(x) = 0 } x

q(x)

CS1112 Lecture 3

Lecture slides 2

Lecture 3 9

Write a code fragment that prints
“yes” if q(x) increases across the
interval and “no” if it does not.

Problem 1

Lecture 3 10

% Quadratic q(x) = x^2 + bx + c

b = input(‘Enter b: ’);

c = input(‘Enter c: ’);

L = input(‘Enter L: ’);

R = input(‘Enter R: ’);

% Determine whether q increases

% across [L,R]

xc = -b/2;

Lecture 3 12

cbxxxq  2)(2/bxc 

L R
x

No!

Does q(x) increase across [L,R]?

Lecture 3 15

So what is the requirement?

% Determine whether q increases
% across [L,R]
xc = -b/2;

if ________________

fprintf(‘Yes\n’)
else

fprintf(‘No\n’)
end

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
~= Not equal to

Relational Operators

Lecture 3 20

So what is the requirement?

% Determine whether q increases
% across [L,R]
xc = -b/2;

if ________

fprintf(‘Yes\n’)
else

disp(‘No’)
end

disp(‘Yes’)

Lecture 3 21

Write a code fragment that prints
“qleft is smaller”

if q(L) is smaller than q(R).
If q(R) is smaller print

“qright is smaller.”

Problem 2

CS1112 Lecture 3

Lecture slides 3

Lecture 3 22

Calculate q(L)
Calculate q(R)
If q(L) < q(R)

print “qleft is smaller”
Otherwise

print “qright is smaller”

Algorithm v0

Lecture 3 23

Calculate xc

If distance xcL is smaller than distance xcR
print “qleft is smaller”

Otherwise
print “qright is smaller”

Algorithm v0.1

Lecture 3 24

Do these two fragments do the same thing?

% given x, y
if x>y

disp(‘alpha’)
else

disp(‘beta’)
end

% given x, y
if y>x

disp(‘beta’)
else

disp(‘alpha’)
end

A: yes B: no

Lecture 3 30

Consider the quadratic function

q(x) = x2 + bx + c

on the interval [L , R]:

What if you only want to know if q(L) is close to
q(R)?

% Is q(L) close to q(R)?

tol= 1e-4; % tolerance

qL= L*L + b*L + c

qR= R*R + b*R + c

if (abs(qL-qR) < tol)

disp(‘qleft and qright similar’)

end

Lecture 3 32

Do these two fragments do the same thing?

% given x, y
if x>y

disp(‘alpha’)
else

disp(‘beta’)
end

% given x, y
if x>y

disp(‘alpha’)
end
if y>=x

disp(‘beta’)
end

A: yes B: no

CS1112 Lecture 3

Lecture slides 4

Lecture 3 33

Simple if construct

if boolean expression

statements to execute if expression is true

else

statements to execute if expression is false

end

Lecture 3 34

Even simpler if construct

if boolean expression

statements to execute if expression is true

end

Lecture 3 35

The if construct

if boolean expression1
statements to execute if expression1 is true

elseif boolean expression2
statements to execute if expression1 is false
but expression2 is true

:
else

statements to execute if all previous conditions
are false

end

Lecture 3 36

Things to know about the if construct

 At most one branch of statements is executed
 There can be any number of elseif clauses
 There can be at most one else clause
 The else clause must be the last clause in the

construct
 The else clause does not have a condition

(boolean expression)

Lecture 3 39

Consider the quadratic function

q(x) = x2 + bx + c

on the interval [L , R]:

Is the function strictly increasing in [L , R]?
Which is smaller, q(L) or q(R) ?
What is the minimum value of q(x) in [L , R]?

x

q(x)

Lecture 3 40

Write a code fragment that prints
“yes” if xc is in the interval and “no”
if it is not.

Modified Problem 3

CS1112 Lecture 3

Lecture slides 5

Lecture 3 44

So what is the requirement?

% Determine whether xc is in
% [L,R]
xc = -b/2;

if ________________

disp(‘Yes’)
else

disp(‘No’)
end

Lecture 3 46

The value of a boolean expression is either true or false.

(L<=xc) && (xc<=R)

This (compound) boolean expression is made up
of two (simple) boolean expressions. Each has a
value that is either true or false.

Connect boolean expressions by boolean
operators:

and or not
&& || ~

Lecture 3 50

Logical operators

&& logical and: Are both conditions true?

E.g., we ask “is Lxc and xc  R ?”
In our code: L<=xc && xc<=R

|| logical or: Is at least one condition true?

E.g., we can ask if xc is outside of [L,R],
i.e., “is xc  L or R xc ?”
In code: xc<L || R<xc

~ logical not: Negation

E.g., we can ask if xc is not outside [L,R].
In code: ~(xc<L || R<xc)

