CS1112 Lecture 27

= Previous Lecture:
= Linear search, binary search
= Insertion sort
= (Reading: Bubble Sort)

= Today’s Lecture:
= Merge Sort
= What's next?

= Announcements
= P6 due Thursday at | Ipm
= Final exam: Dec 7% 2-4:30pm, Rockefeller Hall

= Last names beginning with A-N: Room 201
= Last names beginning with O-Z: Room 203

Linear search and binary search

m Linear search

= “Effort” is linearly proportional to n, the size of the
search space (e.g., the length of the vector)

= Can represent effort by the number of comparisons
against the search target done during the search
m Binary search
= Effort is proportional to log,(n) where n is the size
of the search space
m Saving of log,(n) over n is significant when n is
large! But binary search requires sorted vector

Lecture 27 4

Binary search is efficient, but we need to sort the
vector in the first place so that we can use binary
search

= Many different algorithms out there...

= We saw insertion sort (and read about bubble
sort)

= Let’s look at merge sort

= An example of the “divide and conquer”
approach using recursion

Lecture 27 5

Which task is “easier,” sort a length 1000 array or
merge* two length 500 sorted arrays into one?

*Merge two sorted arrays so that the resultant
array is sorted

Lecture 27 8

Motivation: merging is an easier job than sorting!

What if those two helpers
each had two sub-helpers?

® And the sub-helpers each had
two sub-sub-helpers? And..

Subdivide the sorting task

[lefufelefafofF]fr]ofr]c]a]n]

[Hlelv]efelxfa]e] [F]-]Pfe]rRIc]a]N]

Lecture 27 1

Lecture slides

CS1112 Lecture 27

Subdivide again

[lelefelefxafof [Fl-fr]ofr]c]a[n]

(lefede] Blxfafo] [Flt]PIe] [Rcfa]n]

And again

(lefede] Blxfafo] [FItIPIe] (RIcf3[N]

LE] vle] (o< [afe] [EI] (PIo] [RIc] [3]M]

And one last time

HEpENENIERRENIEEREEEE
[FIE] 0] BT (A1 FIEEIE] EE B0

LLLLLLL 27

Now merge

ElH] (o] [BIx] [r1o] [FIt] [oIPf [c1R] [IN]

eeeeee

And merge again

R aeEE BiEEkE (S

L] (o] elx] [Afe] O] [e1P] [efr] 3]V

And again

A1 B E]E [I] R EEE T P

Elolsiv] [alel<le] [IF]fe] [els[v]R]

Lecture slides

CS1112 Lecture 27

function y = mergeSort(x)

% x is a vector. y iIs a vector

% consisting of the values in x

% sorted from smallest to largest.

And one last time

[afe]cfelefFfo]faxfruin]Plo]r]

n = length(x);

|A|B|E|G|H|KIMIQ| ICIDlFIJlLINlPIRl if n==1
y = X3
else
m = floor(n/2);
yL = mergeSortL(x(1:m));
yR = mergeSortR(x(m+1:n));
y = merge(yL,yR);
end
The central sub-problem is the merging of two Merge
sorted arrays into one single sorted array 1 :
4
[15]42]55]65]75] y:[15[42]55]65]75] iy:[1]
4
[12]15]33[35]42]45[55[65] 75] 2: [T iz 1]
ix<=4 and iy<=5: x(ix) <= y(iy) ???

Merge Merge
4 4
X: iX: X: ix:
1 4
y:[15]42]55[65][75] iy:[1] y:[15[42]55]65[75] iy:[2]
4 i
R 2] 23 22 =1 I I I I I I I EE R
ix<=4 and iy<=5: x(ix) <= y(iy) ??? ix<=4 and iy<=5: x(ix) <= y(iy) ???

Lecture slides

CS1112 Lecture 27

Merge

i |
S EIES
!

y:|15[42[55]65[75]

2. | O

| iz:

ix<=4 and iy<=5:

x(ix) <= y(iy)

???

Merge

i |
 [2[53[55] 45
L !

y:|15[42]55]65[75]

ix:
iy:

| iz:El

x(ix) <= y(iy) ???

Z;|12|15|33|35|42| | | |

iXx<=4 and iy<=5:

Merge

|
(2[5
!

y:[15]42]55(65[75|

ix:
iy:

|

z:|12[15[33[35[42]45]|55] |

| =[5]

iy <=5

y:[15]42]55[65[75|

Merge
|
« [i:[E]
1 |
y:[15]42]55[65]75] iy:[3]
|
2:[12[15]33]35[42][a5] [[| iz 7]
ix >4
Merge
|
« [5]
1 |

iy:

z:|12]15[33[35[42]45]55]65]|

| 7]

iy <= 5

Lecture slides

function z = merge(X,y)

nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);

ix=1; iy =1; iz = 1;

while ix<=nx && i1y<=ny

end
% Deal with remaining values in x or y

CS1112 Lecture 27

function z = merge(X,y)
nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);
ix =1; iy = 1; iz = 1;
while ix<=nx && iy<=ny
if x(@(ix) <= y(iy)
z(iz)= x(ix); ix=ix+l; iz=iz+l;
else
z(iz)= y(iy); 1iy=iy+l; iz=iz+l;
end
end
while ix<=nx % copy remaining x-values
z(iz)= x(ix); ix=ix+l; iz=iz+l;
end
while iy<=ny % copy remaining y-values
z(iz)= y(iy); 1iy=iy+l; iz=iz+l;
end

function y = mergeSort(x)

% x is a vector. y iIs a vector

% consisting of the values in x

% sorted from smallest to largest.

n = length(x);

if n==1
y = X5

else
m = Ffloor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
y = merge(yL,yR);

end

Lecture 27 48

function y=mergeSort(x)

n=length(x);
if n==1
y=x;
else “
m=Floor(n/2); mexjcjart — (Feald
yL=mergeSort(x(1:m)); (ms1) e i e s oo s
yR=mergeSort(x(m+1:n)); ms
y=merge(yL,yR); | mage 7
end / P— &
msq b
T A =t _JE@ ory
—) \\
//I‘ \ msi }ﬂ s 1 e

5 s [mege \3jjs
N
ws4 () E;l b Eii iﬂ S it hors

ms3 1] mMgel
JI &

Lecture 27 53

How do merge sort, insertion sort, and bubble sort compare?

= Insertion sort and bubble sort are similar
= Both involve a series of comparisons and swaps
= Both involve nested loops

] Merge sort uses recursion

See InsertionSort.m

Lecture 24 56

function x = insertSort(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i= 1:n-1

% Sort x(1:i+l1) given that x(1:i) is sorted
=i

e J>0 & x(i+1)<x()

% swap x(J+1) and x(j)
temp= x(J);
x(@)= xg+1);
x(J+1)= temp;
J=J-1;
end
end

Lecture 24 57

Lecture slides

How do merge sort and insertion sort compare?

= Insertion sort: (worst case) makes k comparisons
to insert an element in a sorted array of k
elements. For an array of length N:

for big N

= Merge sort:

= Insertion sort is done in-place; merge sort
(recursion) requires much more memory

Lecture 24 50

CS1112 Lecture 27

function y = mergeSort(x)

% X is a vector. y iIs a vector

% consisting of the values in x

% sorted from smallest to largest.

n = length(x); All the comparisons between

if n==1 vector values are done in merge
y = X3

else

<K =3
o
no

end

Lecture 24 61

function z = merge(X,y)

nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);

ix =1; iy = 1; iz = 1;

while ix<=nx && iy<=ny

if [x(ix) <= y(iy)

z(1z)= x(1x); ix=ix+l; iz=iz+l;
else

z(iz)= y(iy); iy=iy+l; iz=iz+l;
end

end

while ix<=nx % copy remaining x-values
z(iz)= x(ix); Ix=ix+l; iz=iz+l;

end

while iy<=ny % copy remaining y-values
z(iz)= y(iy); 1iy=iy+l; iz=iz+l;

end

Lecture 24 62

Merge sort: log,(N) “levels”; N comparisons each level

LTI PTPTPPTPTiTgl
LT iTy P TiTirl
HNENpEEEEEnEEEEREEEE

M MMM M
[(I0ET Lo0e] 0T (A0 (EIE] [T BT

Lecture 24 64

How to choose??

= Depends on application

= Merge sort is especially good for sorting large
data set (but watch out for memory usage)

= Insertion sort is “order N?” at worst case, but
what about an average case! If the application
requires that you maintain a sorted array,
insertion sort may be a good choice

Lecture 24 66

Why not just use Matlab’s sort function?

= Flexibility

= E.g, to maintain a sorted list, just write the code for
insertion sort

= E.g, sort strings or other complicated structures

= Sort according to some criterion set out in a function
file
= Observe that we have the comparison X(J+1)<x(j)
= The comparison can be a function that returns a boolean value
= Can combine different sort/search algorithms for
specific problem

Lecture 24 67

We've reached the end of CS1112... now what?

= Continue practicing your problem solving—
problem decomposition—skills, in programming
and other arenas!

= Interested in further study?

= ENGRD/CS 2110 Object-oriented programming and
data structure

Lecture 27 68

Lecture slides

CS1112 Lecture 27

ENGRG/CS 2110 OOP and Data Structures

= Learn new programming concepts and further explores
those you'’ve seen in CS1112
= OOP, program design and development
= Recursion
= Complex data structures and related algorithms
= Taughtin Java
= Optional CS 21 || meets | hr/week; additional practice
with OOP, Java, and other course topics

= During break, check out this website:
http://www.cs.cornell.edu/courses/CS1130/201 5sp/

Lecture 27 69

We've reached the end of CSI1112... now what?

= Interested in further study?

= Short courses in Python (CS 1133), C++ (CS 2024),
..., etc.

= More general CS courses: CS 2800 Discrete
structures, CS 2850 Networks

Lecture 27 70

What we learned...

= Develop/implement algorithms for problems
= Develop programming skills

= Design, implement, document, test, and debug
= Programming “tool bag”

= Functions for reducing redundancy

= Control flow (if-else; loops)

= Recursion

= Data structures

= Graphics

= File handling

Lecture 27 7

What we learned... (conrq)

= Applications and concepts
= Image processing
= Object-oriented programming

= Sorting and searching—you should know the
algorithms covered

= Divide-and-conquer strategies

= Approximation and error

= Simulation

= Computational effort and efficiency

Lecture 27 72

Computing gives us insight into a problem

= Computing is not about getting one answer!
= We build models and write programs so that we can
“play”” with the models and programs, learning—gaining
insights—as we vary the parameters and assumptions
= Good models require domain-specific knowledge (and
experience)
= Good programs ...
= are modular and cleanly organized
= are well-documented
= use appropriate data structures and algorithms
= are reasonably efficient in time and memory

Lecture 27 73

Final Exam

= Dec 7, 2-4:30pm, Rockefeller Hall 201 (A-N), 203 (O-Z)

= Covers entire course; some emphasis on material after
Prelim 2

» Closed-book exam, no calculators

= Bring student ID card

s Check for announcements on webpage:
= Study break office/consulting hours
= Review session time and location
= Review questions
= List of potentially useful functions

Lecture 27 76

Lecture slides

