m Previous Lecture:
= Linear search, binary search

= Insertion sort
= (Reading: Bubble Sort)

s Today’s Lecture:
= Merge Sort
= What’s next!

= Anhouncements
s P6 due Thursday at | Ipm

= Final exam: Dec 7t 2-4:30pm, Rockefeller Hall

= Last names beginning with A-N: Room 201
= Last names beginning with O-Z: Room 203

Announcements

m P6 due Thursday at | Ipm

m Final exam:
s Dec 7, 2-4:30pm, Rockefeller Hall 201 (A-N), 203 (O-2)

m Please fill out course evaluation on-line, see
“Exercise 16’

m Revised office/consulting hours during study
break

= Pick up papers during consulting hours at
Carpenter

m Read announcements on course website!

Lecture 27

Linear search and binary search

m Linear search

s “Effort” is linearly proportional to n, the size of the
search space (e.g., the length of the vector)

= Can represent effort by the number of comparisons
against the search target done during the search

m Binary search

= Effort is proportional to log,(n) where n is the size
of the search space

= Saving of log,(n) over n is significant when n is
large! But binary search requires sorted vector

Lecture 27 4

Binary search is efficient, but we need to sort the
vector in the first place so that we can use binary
search

= Many different algorithms out there...

= We saw insertion sort (and read about bubble
sort)

m Let’s look at merge sort

= An example of the “divide and conquer”
approach using recursion

Lecture 27

Which task is “easier,” sort a length 1000 array or
merge™® two length 500 sorted arrays into one?

*Merge two sorted arrays so that the resultant
array is sorted

Lecture 27 8

Motivation: merging is an easier job than sorting!

What if those two helpers
each had two sub-helpers?

® And the sub-helpers each had
two sub-sub-helpers? And..

Subdivide the sorting task

‘H|E|M|G|B|K|A|Q|F|L|P|D|R|C|J|N
‘H|E|M|G|B|K|A|Q ‘F|L|P|D|R|C|J|N

Lecture 27

11

Subdivide again

‘H|E|M|G|B|K|A|Q

‘F|L|P|D|R|C|J|N

H|E|M|G

B[O

F|L|P|D

‘RlClJlN

Lecture 27

12

And again

Lecture 27

H|E|M|G B|K|A|Q F|L|P|D ‘RlClJlN
H|E ‘MlG B|K |A|Q F|L ‘PlD R|c ‘JlN

13

And one last time

[[T 1]

(LI LI

L[

(¢}
N
\l

S

Now merge

[[TTTTTTITTITITT]
HEEEEE [TTTTTT]

[[T [COEIT] LT

‘JlN
H|IE MUHG]IBUK] [AIQ FIHL]TIP||ID R1IC ‘JlN
Le L L 15

And merge again

Lecture 27

16

And again

[[T 1]

Afslefe]Hfxiu]o

‘C|D|F|J|L|N|P|R

E|G|H|M

AfB]K]O

‘DlFlLlP ‘ClJlNlR

Lecture 27

17

And one last time

A|B|C|D|£|F|G|H|J|K|L|M|N|P|Q|R
A|B|E|G|H|K|M|Q ‘C|D|F|J|L|N|P|R

Lecture 27

18

Done!

A|B|C|D|£|F|G|H|J|K|L|M|N|P|Q|R

Lecture 27

19

function y = mergeSort(Xx)

% X 1S a vector. Yy IS a vector

% consisting of the values In X

% sorted from smallest to largest.

n = length(x);

1T n==1
Y = X,
else
m = Ffloor(n/2);
yL = mergeSortL(x(1:m));

YR = mergeSortR(x(m+1:n));

y = merge(yL,yR);
end

Lecture 27 20

The central sub-problem is the merging of two
sorted arrays into one single sorted array

12\33\35\45

15‘42‘55‘65‘75

12]15[33[35[42[45(55[65[75

Merge

| !

x:[12|33|35(45] iy -
|

y:|15|42|55(65]|75] iy:
|

21 I I O N S N S 2

IX<=4 and 1y<=b: x(1x) <= y(1y) 2?77

Merge

!

x:[12|33|35(45] iy -
| |

y:|15|42|55(65]|75] iy:
1 -

zzf22) | P iz

IX<=4 and 1y<=5: x(1x) <= y(1y) VYES

Merge

| !
x:[12|33|35(45] iy -
|
y:|15|42|55(65]|75] iy:
1 -
222 [P iz

IX<=4 and 1y<=b: x(1x) <= y(1y) 2?77

Merge

| !
x:[12|33|35(45] iy -
|
y:|15|42|55(65]|75] iy:
1 -
zo(12)18f | | | | [| | iz

IX<=4 and 1y<=5:

x(ix) <= y(iy) NO

Merge

| !
x:[12|33|35(45] iy -
|
y:|15|42|55(65]|75] iy:
1 -
zo(12)18f | | | | [| | iz

IX<=4 and 1y<=b: x(1x) <= y(1y) 2?77

Merge

!
x:[12|33|35(45] iy -
| |
y:|15|42|55(65]|75] iy:
1 -
zo(12)15033 | | [|] | iz

IX<=4 and 1y<=5: x(1x) <= y(1y) VYES

Merge

| !
x:[12|33|35(45] iy -
|
y:|15|42|55(65]|75] iy:
|
2-(12]15033) | | | | | | iz

IX<=4 and 1y<=b: x(1x) <= y(1y) 2?77

Merge

| !
x:[12|33|35(45] iy -
|
y:|15|42|55(65]|75] iy:
|
z-{12]15]383|35 [| | | | iz:

IX<=4 and 1y<=5: x(1x) <= y(1y) VYES

Merge

| !
x:[12|33|35(45] iy -
|
y:|15|42|55(65]|75] iy:
|
z-{12]15]383|35 [| | | | iz:

IX<=4 and 1y<=b: x(1x) <= y(1y) 2?77

Merge

!
x:[12|33|35(45] iy -
|
y:|15|42|55(65]|75] iy:
!
z:{12]15]33|35(42 | | | | iz:

IX<=4 and 1y<=5:

x(ix) <= y(iy) NO

Merge

!
x:[12|33|35(45] iy -
|
y:|15|42|55(65]|75] iy:
!
z:{12]15]33|35(42 | | | | iz:

IX<=4 and 1y<=b: x(1x) <= y(1y) 2?77

Merge

| !
x:[12|33|35(45] iy -
|
y:|15|42|55(65]|75] iy:
|
z:[12]15]33|35[42(45| | | | iz:

IX<=4 and 1y<=5: x(1x) <= y(1y) VYES

Merge

x:‘12‘33‘35‘45‘

1

y:[15[42[55(65|75]

1

1X:

1y:

z:[12]15|33|35[42|45]

‘ iz-

IX > 4

Merge

x:‘12‘33‘35‘45‘

1

y:[15[42[55(65|75]

1

1X:

1y:

z:[12]15|33(35(42]45|55(|

‘ iz-

IX > 4:

take y(1y)

Merge

x:‘12‘33‘35‘45‘

1

y:[15[42[55(65|75]

1

1X:

1y:

z:(12]15|33|35(42|45|55|

‘ iz-

Iy <= 5

Merge

x:‘12‘33‘35‘45‘

1

y:[15[42[55(65|75]

1

1X:

1y:

z:(12]15|3335(42|45|55(65|

‘ 1Z:

Iy <= 5

Merge

x:‘12‘33‘35‘45‘

1

y:[15[42[55(65|75]

1

1X:

1y:

z:(12]15|3335(42|45|55(65|

‘ 1Z:

Iy <= 5

Merge

x:|12|33|35(45] ix:
l
y:|15|42|55(65]|75] iy:

1

z:(12]15|33|35(42(45|55|65(75(iz:

Iy <= 5

function z = merge(X,Y)

nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);

IX = 1; 1y =1; 1z = 1;

function z = merge(X,Y)

nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);

IX =1; 1y =1; 1z = 1;

while IxX<=nx && 1y<=ny

end
% Deal with remaining values In X or y

function z = merge(X,Y)
nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);
IX = 1; 1y =1; 1z = 1;
while IxX<=nx && 1y<=ny
1T x(ix) <= y(iy)
z(12)= X(IX); IX=IX+]1;
else
z(1z2)= y(1y); 1y
end

]
N
[
]
N

N
[
N

1y+1;

end
% Deal with remaining values In X or y

+
=

+
-

function z = merge(X,Y)
nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);
IX = 1; 1y =1; 1z = 1;
while IxX<=nx && 1y<=ny
1T x(ix) <= y(iy)
z(12)= X(IX); IX=IX+]1;
else
z(1z2)= y(1y); 1y
end

N
I
N
+
=

N
1
N
+
=

1y+1;

end

while Ix<=nx % copy remaining Xx-values
z(12)= x(1xX); IX=IX+1l; 1z=1z2+]1;

end

while 1y<=ny % copy remaining y-values
z(12)= y(ry); 1y=1y+l; 1z=1z+1;

end

function y = mergeSort(Xx)

% X 1S a vector. Yy IS a vector

% consisting of the values In X

% sorted from smallest to largest.

n = length(x);

1T n==1
Y = X,
else
m = Ffloor(n/2);
yL = mergeSortL(x(1:m));

YR = mergeSortR(x(m+1:n));

y = merge(yL,yR);
end

Lecture 27 45

function y = mergeSortL(Xx)

% X 1S a vector. Yy IS a vector

% consisting of the values In X

% sorted from smallest to largest.

n = length(x);

1T n==1
y = X,
else
m = Ffloor(n/2);
yL = mergeSortL L(x(1:m));
YR = mergeSortL R(xX(m+1:n));

y = merge(yL,yR);
end

Lecture 27 46

function y = mergeSortL L(X)

% X 1S a vector. Yy IS a vector

% consisting of the values In X

% sorted from smallest to largest.

n = length(x);

1T n==1
y = X,
else
m = Ffloor(n/2);
yL = mergeSortL L L(xX(1:m));
YR = mergeSortL L R(xX(m+1:n));

y = merge(yL,yR);
end

Lecture 27 47

function y = mergeSort(Xx)

% X 1S a vector. Yy IS a vector

% consisting of the values In X

% sorted from smallest to largest.

n = length(x);

1T n==1
Y = X,
else
m = Ffloor(n/2);
yL = mergeSort(x(1:m));

YR = mergeSort(x(m+1:n));

y = merge(yL,yR);
end

Lecture 27 48

function y=mergeSort(x)

n=length(x);

i1t n==1
y=X;

else
m=Ffloor(n/2);
yL=mergeSort(x(1:m));
yR=mergeSort(x(m+1:n));
y=merge(yL,yR);

end

| =2 2 4 k=~ A -~ =

Lecture 27 51

function y=mergeSort(x)
n=length(x);
it n==1

y=X,

st
m=Floor(n/2); m(,rﬁ—ejov't — T ealt

yL=mergeSort(x(1:m)); > 2 4 © ¢ —— 3

yR=mergeSort(x(m+1:n)); (msd) Xﬁ \ vvuye%g_j7

y=merge(yL,yR);

end :fi::::::::::::;ﬁzr \\QZZI\\
T 2 msd LLLL) s ©

else

Lecture 27 53

function y=mergeSort(x)
n=length(x);
it n==1

y=X;

else sk
m=Floor(n/2); mer 3<féz't

yL=mergeSort(x(1:m));
yR=mergeSort(x(m+1:n)); (msd)
y=merge(yL,yR);

end

s L

Lecture 27 54

How do merge sort, insertion sort, and bubble sort compare!

m Insertion sort and bubble sort are similar

= Both involve a series of comparisons and swaps

= Both involve nested loops

= Merge sort uses recursion

Lecture 24

See InsertionSort.m

56

function X = i1nsertSort(x)
% Sort vector x iIn ascending order with Insertion sort

n = length(X);
for 1= 1:n-1

% Sort x(1:1+l1l) given that x(1:1) 1Is sorted
3= 1;
while J>0 && x(+1)<x()

% swap x(J+1) and x()
temp= x();

x()= xA+1);
x(J+1)= temp;

J= 13-1;

end
end

Lecture 24 57

How do merge sort and insertion sort compare!

= Insertion sort: (worst case) ma
to insert an element in a sortec

Kes | comparisons
array of i

elements. For an array of lengt

n N:

|+2+...+(N-1) = N(N-1)/2, say N2 for big N

= Merge sort:

Lecture 24

60

function y = mergeSort(Xx)

% X 1S a vector. Yy IS a vector

% consisting of the values In X

% sorted from smallest to largest.

£)
n = length(x); All the comparisons between
-

f n==1 vector values are done in merge

_4

else

mergesort(x(m+1:n));

merge(yL,yR);
end

Lecture 24 61

function z = merge(X,Y)
nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);
IX = 1; 1y =1; 1z = 1;
while IxX<=nx && 1y<=ny
1T | x(ix) <= y(iy)
z(12)= x(1X); Ix=ix+1;
else
z(1z)= y(1y); 1y=iy+l;
end

N
I
N
+
=

N
1
N
+
=

end

while Ix<=nx % copy remaining Xx-values
z(12)= x(1xX); IX=IX+1l; 1z=1z2+]1;

end

while 1y<=ny % copy remaining y-values
z(12)= y(ry); 1y=1y+l; 1z=1z+1;

end

Lecture 24

62

Merge sort: log,(N) “levels”; N comparisons each level

[[T 1]

(LI LI

L[

21N

How do merge sort and insertion sort compare!

= Insertion sort: (worst case) ma

Kes | comparisons

|+2+...+(N-1) = N(N-1)/2, say N2 for big N

to insert an element in a sorted array of i
elements. For an array of length N:

(N log,(N))) < magnitude

Order of
s Merge sort: N -log,(N)

» Insertion sort is done in-place; merge sort
(recursion) requires much more memory

See comparelnsertMerge.m

How to choose??

= Depends on application

= Merge sort is especially good for sorting large
data set (but watch out for memory usage)

= Insertion sort is “order N?” at worst case, but
what about an average case! [f the application
requires that you maintain a sorted array,
insertion sort may be a good choice

Lecture 24 66

Why not just use Matlab’s sort function?

m Flexibility

= E.g., to maintain a sorted list, just write the code for
Insertion sort

m E.g., sort strings or other complicated structures

= Sort according to some criterion set out in a function
file
s Observe that we have the comparison X(J+1)<x(J)

s The comparison can be a function that returns a boolean value

= Can combine different sort/search algorithms for
specific problem

Lecture 24 67

We've reached the end of CSI1112... now what?

= Continue practicing your problem solving—
problem decomposition—skills, in programming
and other arenas!

= Interested in further study?

s ENGRD/CS 2110 Object-oriented programming and
data structure

Lecture 27 68

ENGRG/CS 2110 OOP and Data Structures

= Learn new programming concepts and further explores
those you've seen in CS1112
s OOP, program design and development
= Recursion

s Complex data structures and related algorithms
= Taughtin Java

s Optional CS 2111 meets | hr/week; additional practice
with OOP, Java, and other course topics

= During break, check out this website:
http://www.cs.cornell.edu/courses/CS1130/201 5sp/

Lecture 27 69

We've reached the end of CSI1112... now what?

= Interested in further study?

= Short courses in Python (CS [133), C++ (CS 2024),
., etc.

= More general CS courses: CS 2800 Discrete
structures, CS 2850 Networks

Lecture 27 70

What we learned...

m Develop/implement algorithms for problems

m Develop programming skills
= Design, implement, document, test, and debug

= Programming “tool bag”
= Functions for reducing redundancy
s Control flow (if-else; loops)
= Recursion
= Data structures
s Graphics
= File handling

Lecture 27

What we learned... (ontq)

= Applications and concepts
= Image processing
s Object-oriented programming

= Sorting and searching—you should know the
algorithms covered

= Divide-and-conquer strategies
= Approximation and error
= Simulation

s Computational effort and efficiency

Lecture 27

72

Computing gives us insight into a problem

= Computing is not about getting one answer!

s We build models and write programs so that we can
“play” with the models and programs, learning—gaining
insights—as we vary the parameters and assumptions

= Good models require domain-specific knowledge (and
experience)

s Good programs ...
= are modular and cleanly organized
= are well-documented
= use appropriate data structures and algorithms

= are reasonably efficient in time and memory

Lecture 27 73

Final Exam

s Dec 7, 2-4:30pm, Rockefeller Hall 201 (A-N), 203 (O-2)

s Covers entire course; some emphasis on material after
Prelim 2

m Closed-book exam, no calculators
= Bring student ID card

s Check for announcements on webpage:
= Study break office/consulting hours
= Review session time and location
= Review questions
= List of potentially useful functions

Lecture 27 76

Final Exam

s Dec 7, 2-4:30pm, Rockefeller Hall 201 (A-N), 203 (O-2)

= Covers entire course; some emphasis on materi=! -
Prelim 2

s Closed-book exam - W‘s\"\eﬁ

s Rui- 566’5

~ oist of potentially useful functions

Lecture 27 77

