CS1112

Lecture 26

» Previous Lecture:
= Inheritance in OOP
= Overriding methods

= Today’s Lecture:
= Recursion
= Remove all occurrences of a character in a string
= A mesh of triangles

= Announcements:
= Discussion in the lab this week. Attendance is optional
but be sure to do the posted exercise.
= Project 6 due Thurs Dec | at | Ipm. Remember
academic integrity!
= Office/consulting hours end Tuesday (tonight) for
Thanksgiving Break and will resume Monday

Inheritance

Inheritance relationships are shown in a class diagram, with the

arrow pointing to the parent class
handle

An is-a relationship: the child is @ more specific version of the
parent. Eg, a trick die is a die.

Multiple inheritance: can have multiple parents € e.g., Matlab
Single inheritance: can have one parent only € e.g, Java

Lecture 25 2

Overriding methods

m Subclass can override definition of inherited method

= New method in subclass has the same name (but has
different method body)

See method roll in TrickDie.m

Lecture 25

Overridden methods: which version gets invoked?

To create a TrickDie: call the TrickDie constructor, which
calls the Die constructor, which calls the roll method. Which
roll method gets invoked?

classdef Die classdef TrickDie < Die

function TD=TrickDie(..)

\ﬁ)@nie(m);
T

function D=Die(..)

B.roll()__\q

end 2 \~€&d . 7

function roll(self) function roll(self)

end end

end end

Lecture 25 a

Overriding methods

= Subclass can override definition of inherited method

= New method in subclass has the same name (but has
different method body)

= Which method gets used??

The object that is used to invoke a method determines
which version is used

= Since a TrickDie object is calling method rol I, the
TrickDie’s version of rol 1 is executed

= In other words, the method most specific to the type
(class) of the object is used

Lecture 25

Lecture slides

Accessing superclass’ version of a method

Syntax

» Subclass can override

classdef Child < Parent

superclass’ methods properties
propC
= Subclass can access superclass’ e
version of the method methods

function x= method(arg)

See method disp in TrickDie.m

Lecture 25

CS1112 Lecture 26

Important ideas in inheritance

= Keep common features as high in the hierarchy as
reasonably possible

= Use the superclass’ features as much as possible

= “Inherited” = “can be accessed as though declared
locally”

(private member in superclass exists in subclasses; they
just cannot be accessed directly)

= Inherited features are continually passed down the
line

Lecture 25 7

(Cell) array of objects

= A cell array can reference objects of different classes
A{1}= Die(Q);
A{2}= TrickDie(2,10); % OK
= A simple array can reference objects of only one
single class

B(1)= DieQ);
B(2)= TrickDie(2,10); % ERROR

= (Assignment to B(2) above would work if we define a “convert method” in class
TrickDie for converting a TrickDie object to a Die. We won’t do this in CSI112.)

End of Matlab OOP in CSI112

OORP is a concept; in different languages it is
expressed differently.

In CS (ENGRD) 2110 you will see Java OOP

Recursion

= The Fibonacci sequence is defined recursively:
F(1)=1, FQ2)=I,
FG)=F(1) +F(2) =2 Bl
F4)=FQ2) +F3)=3 [F(k)=F(k-2) + F(k-1)
It islfdeﬁned in terms of itself; its definition invokes
itself.

= Algorithms, and functions, can be recursive as well.
l.e., a function can call itself.

= Example: remove all occurrences of a character
from a string

“gc aatc gga ¢ > = “gcaatcggac’

Lecture 26 10

Example: removing all occurrences of a character

= Can solve using iteration—check one character
(one component of the vector) at a time

1 2 Kk
B G

Subproblem 1: Iteration:

Keep or discard s(1) Divide problem

Subproblem 2: .
Keep or discard s(2) Into Sequence of
equal-sized,
Subproblem k: Hontical
Keep or discard s(k) '@entica
subproblems

Lecture slides

Example: removing all occurrences of a character
= Can solve using recursion
= Original problem: remove all the blanks in string s
= Decompose into two parts: I. remove blank in s(l)

2 remove blanks in s(2:length(s))
Orriginal problem

Decompose into 2 parts . @ Decompose

. @ Decompose
. @ Decompose

Decompose
(]

CS1112 Lecture 26

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==
return
else
if s(1)~=
% return string is
% s(1) and remaining s with char c removed

% Base case: nothing to do

else % s(1)==c
% return string is just
% the remaining s with char c removed

end
end

Lecture 26 16

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c

else

s= removeChar(c, s(2:length(s)));
end
end

removeChar - 1%t call
<
ﬂ!ﬂ![."]

@___1

s= [s(1) removeChar(c, s(2:length(s)))]:

s [d[_[o[_Tg]
cd

function s = removeChar(c, s)
if length(s)==0
return
else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];
else
s= removeChar(c, s(2:length(s)));
end
end

removeChar - 15" call removeChar - 2 call

removeChar - 3¢ call

s [d[_[o[_g]
°d

removeChar - 4* call
CD CD c cg
S\d_o_g S_o_g S S-
[@m___1f [1 [@ [—1

removeChar - 5"‘ call
]
S@

[@ —1

end
end

removeChar - 1+ call

removeChar - 2™ call

function s = removeChar(c, s)
if length(s)==0
return
else
if s(1)-=c
s= [s(1) removeChar(c, s(2:length(s)))]; s EI!EI!E
else
s= removeChar(c, s(2:length(s))); ¢ D
end
end
removeChar - 1% call removeChar - 2 call
e[e[
s[d[_Jo[_]g s[_lo]_|g
tm__1f| £ 1
I
function s = removeChar(c, s)
if length(s)==(
return
else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))]; s [d[_[o]_[g]
else
s= removeChar(c, s(2:length(s))); c[d

removeChar - 3 call

L 1) |C

removeChar - 4™ call
c] c] c cg
sld[_[ol_Ig] slLlol_Ig] SIHH! s[Ig]
Ky X X

[@ [1

removeChar - 6™ call

removeChar - 5'*' call

]

se”

°d
slg

T 1

Lecture slides

function s = removeChar(c, s)
if length(s)==
return
else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];
else
s= removeChar(c, s(2:length(s)));
end
end

removeChar - 15" call removeChar - 2 call

removeChar - 3¢ call

s [d[_[o[_To]
el

removeChar - 4' call

]]
S\d,o,g s[_[o[_[g

N
L@ 1 |C]

S
[@ [1

°]
5!ﬂ

goveChar - 6™

removeChar - 5™

CS1112 Lecture 26

function s = removeChar(c, s)
it length(s)==0
return
else
if s(1)~—=c
s= [s(1) removeChar(c, s(2:length(s)))]: s [d[_[o]_[g]
else
s= removeChar(c, s(2:length(s))); c E\
end
end

oveChar - 203l

removeChar - 15t call oveChar - 3l

dgoveChar - 4™

>

Key to recursion

= Must identify (at least) one base case, the
“trivially simple” case
= no recursion is done in this case

= The recursive case(s) must reflect progress
towards the base case

= E.g, give a shorter vector as the argument to the
recursive call — see removeChar

is useful in geometric situations

Divide-and-conquer methods, such as recursion,

Chop a region up into
triangles with smaller
triangles in “areas of
interest”

Recursive mesh generation

Lecture 26

Why is mesh generation a divide-&-conquer process?!

Let’s draw this graphic

Lecture 26 36

A “level-1” partition of the triangle

triangle to obtain the “level-2” partitioning

Lecture 26

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white)

The “level-2” partition of the triangle

Lecture 26 30

Lecture slides

CS1112

Lecture 26

The “level-4” partition of the triangle

Lecture 26 a2

The basic operation at each level

iT the triangle is small

Don’t subdivide and just color it yellow.
else

Subdivide:

Connect the side midpoints;

color the interior triangle -;

apply same process to each outer triangle.
end

Lecture 26 a3

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
Ffill(x,y,"y") % Color this triangle yellow

else

% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.

a = [(x(L)+x(2))72 (x(2)+x(3))/2 (x(3)+x(1))/2];

b = [(y(D+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];

fill(a,b,™m")

% Apply the process to the three "corner™ triangles...

end

Lecture 26 64

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
Ffill(x,y,"y") % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect

% midpts to get “interior triangle”; color it magenta.
a = [(x(L)+x(2))72 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(D+y(2))/2 (y(2)+y(3))/2 (y()+y(1))/2];
fill(a,b,™m")

=

Apply the process to the three “corner" triangles...
MeshTriangle([x(1) a(l) a(3)]1.[y(1) b(1) b(3)],L-1)
MeshTriangle([x(2) a(2) a(1)]1,[y(2) b(2) b(1)],L-1)
MeshTriangle([x(3) a(3) a(2)]1,[y(3) b(3) b(2)]1,L-1)
end

Lecture 26 65

Key to recursion

= Must identify (at least) one base case, the
“trivially simple” case
= No recursion is done in this case

= The recursive case(s) must reflect progress
towards the base case

= E.g, give a shorter vector as the argument to the
recursive call — see removeChar

= E.g, ask for a lower level of subdivision in the
recursive call — see MeshTriangle

Lecture slides

