
CS1112 Lecture 26

Lecture slides 1

 Previous Lecture:
 Inheritance in OOP
 Overriding methods

 Today’s Lecture:
 Recursion 

 Remove all occurrences of a character in a string
 A mesh of triangles

 Announcements:
 Discussion in the lab this week.  Attendance is optional 

but be sure to do the posted exercise.
 Project 6 due Thurs Dec 1 at 11pm.  Remember 

academic integrity!
 Office/consulting hours end Tuesday (tonight) for 

Thanksgiving Break and will resume Monday  

Lecture 25 2

Inheritance

Inheritance relationships are shown in a class diagram, with the 
arrow pointing to the parent class

An is-a relationship:  the child is a more specific version of the 
parent.  Eg., a trick die is a die.

Multiple inheritance:  can have multiple parents  e.g., Matlab
Single inheritance:  can have one parent only  e.g., Java

Die

TrickDie

handle

Lecture 25 3

Overriding methods

 Subclass can override definition of inherited method
 New method in subclass has the same name (but has 

different method body)

See method roll in TrickDie.m
Lecture 25 4

classdef Die 

…

function D=Die(…) 

…

D.roll()

end

function roll(self)

end

…

end

classdef TrickDie < Die
…
function TD=TrickDie(…) 
…
TD@Die(…);
…

end

function roll(self) 

end
…

end

Overridden methods:  which version gets invoked?
To create a TrickDie:  call the TrickDie constructor, which  
calls the Die constructor, which calls the roll method.  Which 
roll method gets invoked?

Lecture 25 5

Overriding methods

 Subclass can override definition of inherited method
 New method in subclass has the same name (but has 

different method body)
 Which method gets used??

The object that is used to invoke a method determines 
which version is used

 Since a TrickDie object is calling method roll, the 
TrickDie’s version of roll is executed

 In other words, the method most specific to the type 
(class) of the object is used

Lecture 25 6

Accessing superclass’ version of a method

 Subclass can override 
superclass’ methods

 Subclass can access superclass’ 
version of the method

classdef Child < Parent

properties
propC

end

methods
…

function x= method(arg)

y= method@Parent(arg);

x = … y … ;
end

…
end

end

Syntax

See method disp in TrickDie.m



CS1112 Lecture 26

Lecture slides 2

Lecture 25 7

Important ideas in inheritance

 Keep common features as high in the hierarchy as 
reasonably possible

 Use the superclass’ features as much as possible
 “Inherited”  “can be accessed as though declared 

locally”
(private member in superclass exists in subclasses; they 
just cannot be accessed directly)

 Inherited features are continually passed down the 
line

(Cell) array of objects

 A cell array can reference objects of different classes
A{1}= Die();

A{2}= TrickDie(2,10);  % OK

 A simple array can reference objects of only one 
single class

B(1)= Die();

B(2)= TrickDie(2,10);  % ERROR

 (Assignment to B(2) above would work if we define a “convert method” in class 
TrickDie for converting a TrickDie object to a Die.  We won’t do this in CS1112.) 

End of Matlab OOP in CS1112

OOP is a concept; in different languages it is 
expressed differently.

In CS (ENGRD) 2110 you will see Java OOP

Lecture 26 10

Recursion

 The Fibonacci sequence is defined recursively:
F(1)=1,  F(2)=1,
F(3)= F(1) + F(2) = 2
F(4)= F(2) + F(3) = 3

It is defined in terms of itself; its definition invokes 
itself.  

 Algorithms, and functions, can be recursive as well.  
I.e., a function can call itself.

 Example:  remove all occurrences of a character 
from a string
‘gc aatc gga c ’  ‘gcaatcggac’

F(k) = F(k-2) + F(k-1)

Lecture 26 11

Example: removing all occurrences of a character

 Can solve using iteration—check one character 
(one component of the vector) at a time

Subproblem 1:
Keep or discard s(1)

‘c’ ‘s’ ‘ ’ ‘1’ ‘1’ ‘1’ ‘2’
1 2 … k …

s

Subproblem 2:
Keep or discard s(2)

Subproblem k:
Keep or discard s(k)

Iteration:
Divide problem 
into sequence of 
equal-sized, 
identical 
subproblems

See RemoveChar_loop.m

Example: removing all occurrences of a character
 Can solve using recursion

 Original problem:  remove all the blanks in string s
 Decompose into two parts:  1. remove blank in s(1)

2. remove blanks in s(2:length(s))
Original problem

Decompose into 2 parts Decompose

Decompose

Decompose

Decompose

‘ ’



CS1112 Lecture 26

Lecture slides 3

Lecture 26 16

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0  % Base case: nothing to do
return

else
if s(1)~=c

% return string is 
% s(1) and remaining s with char c removed

else  % s(1)==c
% return string is just 
% the remaining s with char c removed

end
end

function s = removeChar(c, s)
if length(s)==0 
return

else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs

c

_

_

c _

d _ o gs _

removeChar – 1st call

[       ]d

function s = removeChar(c, s)
if length(s)==0 
return

else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

function s = removeChar(c, s)
if length(s)==0 
return

else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]

removeChar – 5th call
c _

gs

[       ]g

function s = removeChar(c, s)
if length(s)==0 
return

else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]

removeChar – 5th call
c _

gs

[       ]g

removeChar – 6th call
c _

s ‘’

function s = removeChar(c, s)
if length(s)==0 
return

else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]

removeChar – 5th call
c _

gs

[       ]g

removeChar – 6th call
c _

s ‘’

‘’



CS1112 Lecture 26

Lecture slides 4

function s = removeChar(c, s)
if length(s)==0 
return

else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]

removeChar – 5th call
c _

gs

[       ]g

removeChar – 6th call
c _

s ‘’

‘’

ggo go g

d o g

Key to recursion

 Must identify (at least) one base case, the 
“trivially simple” case
 no recursion is done in this case

 The recursive case(s) must reflect progress 
towards the base case
 E.g., give a shorter vector as the argument to the 

recursive call – see removeChar

Lecture 26 33

Divide-and-conquer methods, such as recursion, 
is useful in geometric situations

Chop a region up into 
triangles with smaller 
triangles in “areas of 
interest”

Recursive mesh generation

Lecture 26 36

Why is mesh generation a divide-&-conquer process?

Let’s draw this graphic

Lecture 26 38

A “level-1” partition of the triangle

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white) 
triangle to obtain the “level-2” partitioning

Lecture 26 39

The “level-2” partition of the triangle



CS1112 Lecture 26

Lecture slides 5

Lecture 26 42

The “level-4” partition of the triangle

Lecture 26 43

The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide: 
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.

end

Lecture 26 64

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...

end

Lecture 26 65

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...
MeshTriangle([x(1) a(1) a(3)],[y(1) b(1) b(3)],L-1)
MeshTriangle([x(2) a(2) a(1)],[y(2) b(2) b(1)],L-1)
MeshTriangle([x(3) a(3) a(2)],[y(3) b(3) b(2)],L-1)  

end

Key to recursion

 Must identify (at least) one base case, the 
“trivially simple” case
 No recursion is done in this case

 The recursive case(s) must reflect progress 
towards the base case
 E.g., give a shorter vector as the argument to the 

recursive call – see removeChar

 E.g., ask for a lower level of subdivision in the 
recursive call – see MeshTriangle


