* Previous lecture:
— Why use OOP?

— public and private attributes for properties and
methods

* Today’s lecture:

— More on attributes, getters, and setters
— Inheritance: extending a superclass
— Overriding methods in superclass

* Announcement:
— Project 6 due on Dec It (Thurs) at | |pm.

— Remember academic integrity! VWe will check all
submissions using MOSS.

— Final exam on Wednesday, Dec 7", at 2pm for both Lecl
and Lec 2. Email Randy Hess (rbh27) now if you have an
exam conflict. Specify your entire exam schedule ‘\course
numbers/contacts and the exam times). Ve must have this
information by the end of this week.

A server class ,
A client class

Interval
access
access

access

Data that the client does not need to access should be protected: private
Provide a set of methods for publ 1C access.

|”

The “client-server mode

Public “getter” method

* Provides client the

ability to get a property

value

% Client code

r= Interval(4,6);
disp(r.left) % error
disp(r.getLeft()) % OK

classdef Interval < handle
% An Interval has a left end and a right end

properties (Access=private)
left
right

end

methods
function Inter = Interval(lt, rt)
Inter.left= It;
Inter.right= rt;
end

function It = getLeft(self)

% It is the interval’s left end
It= self.left;

end

function rt = getRight(self)

% rt is the interval’s right end
rt= self.right;

end

end
end

Public “‘setter” method

* Provides client the ability
to set a property value

* Don’t do it unless really
necessary! [f you
implement public setters,
include error checking
(not shown here).

% Client code

r= Interval(4,6);
r.right= 9; % error
r.setRight(9) % OK

classdef Interval < handle
% An Interval has a left end and a right end

properties (Access=private)
left
right

end

methods
function Inter = Interval(lt, rt)
Inter.left= It;
Inter.right= rt;
end

function setLeft(self, It)

% the interval’s left end gets It
self.left= It;

end

function setRight(self, rt)

% the interval’s right end gets rt
self.right=rt;

end

end
end

Always use available methods, even when within same class

classdef Interval < handle
properties (Access=private)
left; right
end
methods

. % Client code
function Inter = Interval(lt, rt)

A = Interval(4,7);

end
function It = getLeft(self) disp(A.getRight())
It = self.left;
end % ... lots of client code that uses
function rt = getRight(self) % class Interval, always using the
:t = BEHEE % provided public getters and
en

.) % other public methods ...
function w = getWidth(self)

w= self.getRight() - self.getLeft() ;
end

In here.. code that
always uses the getters

& setters

end

end

Always use available methods, even when within same class

classdef Interval < handle classdef Interval < handle
properties (Access=private) properties (Access=private)
left; right left; width
end New Interval end
methods implementation methods
function Inter = Interval(lt, rt) function Inter = Interval(lt, w)
end end
function It = getLeft(self) function It = getLeft(self)
It = self.left; It = self.left;
end end
function rt = getRight(self) function rt = getRight(self)
rt = self.right; rt = self.getLeft() + self.getWidth();
end end
function w = getWidth(self) function w = getWidth(self)
w= self.getRight() - self.getLeft() ; w= self.width ;
end
end In here... code that Rewrite the qeﬁers/sﬁ\'\lel"s-
end always uses the getters end | Everything else Smys|-en‘rsl
end & setters end same! Cool! Happy chenis:

A fair die is...

classdef Die < handle
properties (Access=private)
sides=6;
top

end

methods
function D = Die(.)
function roll(.)
function disp(.)
function s = getSides(..)
function t = getTop(.)
end

methods (Access=private)
function setTop(..)

end

end

Lecture 24

What about a trick die?

11

Separate classes—each has its own members

classdef Die < handle
properties (Access=private)
sides=6;

top

end

methods

function D = Die(.)
function roll(.)
function disp(.) .
function s = getSides(..)
function t = getTop(.)
end

methods (Access=private)
function setTop(..)

end

end

classdef TrickDie < handle
properties (Access=private)
sides=6;
top
favoredFace
weight=1;
end
methods
function D = TrickDie(.)
function roll(.)
function disp(.) .
getSides(..)

function s =

function t = getTop(..)

function T = getFavoredFace(.) ..
function w = getWeight(.)

end

methods (Access=private)
function setTop(..)

end

end

Lecture 24

13

Can we get all the functionality of Die in TrickDie without re-
writing all the Die components in class TrickDie?

classdef Die < handle classdef TrickDie < handle
properties (Access=private)
sides=6; . -
Inherit” the components
top :
of class Die
end
methods
function D = Die(.) .. properties (Access=private)
function roll(.) . favoredFace
function disp(.) . weight=1;
function s = getSides(.) ..| end
function t = getTop(.) .. methods o
end function D TrickDie(.)

i function f
methods (Access=private) function w

function setTop(..) end
end end
end

getWeight(.)

Lecture 24 14

getFavoredFace(..) .|

Yes! Make TrickDie a subclass of Die

classdef Die < handle
properties (Access=private)
sides=6;

top

end

methods

function D = Die(.)
function roll(.)
function disp(.)
function s = getSides(..)
function t = getTop(.)
end

methods (Access=protected)
function setTop(..)

end

end

classdeR TrickDie < Die
properties (Access=private)
favoredFace

weight=1;

end

methods

function D = TrickDie(.)
function f=getFavoredFace(.)..
function w = getWeight(..)

end

end

Lecture 24 15

Inheritance

Inheritance relationships are shown in a class diagram, with the
arrow pointing to the parent class

| handle |

T
[Die]
T

[TrickDie J

An is-a relationship: the child is a more specific version of the
parent. Eg., a trick die is a die.

Multiple inheritance: can have multiple parents € e.g., Matlab
Single inheritance: can have one parent only < e.g., Java

Lecture 25 16

Inheritance

* Allows programmer to derive a class from an existing one

* Existing class is called the parent class, or superclass

* Derived class is called the child class or subclass

* The child class inherits the (public and protected) members
defined for the parent class

* Inherited trait can be accessed as though it was locally defined

Lecture 25 17

Which components get “inherited™?

* public components get inherited

° private components exist in
object of child class, but cannot
be directly accessed in child
class = we say they are not
inherited

* Note the difference between
inheritance and existence!

Lecture 25

A Die

' 167.32]

sides|6| top|2

setTop()
Die() getSides()

roll() getTop()
disp()

18

Which components get “inherited™?
A TrickDie
* public components get inherited [17324 |

o [——— s

object of child class, but cannot setTop()

: : : Die() getSides()
be directly accessed in child olll) getTop(

class = we say they are not disp()
inherited favoredFace| 6

* Note the difference between weight| 6
inheritance and existence! TrickDie() disp()

getFavoredFace()
getWeight() roll()

protected attribute

Attributes dictate which members get inherited

private

— Not inherited, can be accessed by local class only
public

— Inherited, can be accessed by all classes
protected

— Inherited, can be accessed by subclasses

* Access: access as though defined locally

All members from a superclass exist in the subclass, but the
private ones cannot be accessed directly—can be accessed
through inherited (public or protected) methods

Lecture 25 20

Let’s play with dice— Dies and TrickDIies

% In Command Window—not class Die or TrickDie

d= Die(6) % disp method of Die used
disp(d.top) % Error;top is private to class Die
d.getTop()

t= TrickDie(2,10,6) % disp method of TrickDie used
disp(t.top) % Error; top is private to class Die

t.getTop() 7% getTop not defined in TrickDie class but
% s inherited

d.setTop(5) 7% Error;setlop is protected so available

t.setTop(5) 7% only to class Die and its subclasses

Constructor: must call the superclass’ constructor
Syntax
* In a subclass’ constructor, call cassdef chitd < parent

’
the superclass’ constructor | crties

before assigning values to the Prop¢
end
subclass’ properties.
methods

* Calling the superclass’
constructor cannot be
conditional: explicitly make
one call to superclass’ g DLPTOPC = argC;
constructor

function obj = Child(argC, argP)

[obj = obj@Parent(argP)]

end

See constructorin TrickDie.m

end

Lecture 25

Overriding methods

* Subclass can override definition of inherited method

* New method in subclass has the same name (but has
different method body)

See method roll inTrickDie.m

Lecture 25

Overriding methods

* Subclass can override definition of inherited method

* New method in subclass has the same name (but has
different method body)

* Which method gets used??

The object that is used to invoke a method determines
which version is used

» Since a TrickDie object is calling method rol I, the
TrickDie’s version of rol I is executed

* In other words, the method most specific to the type
(class) of the object is used

Lecture 25 26

Accessing superclass’ version of a method

Syntax
e Subclass can override classdef Child < Parent
superclass’ methods oroperties
) propC
* Subclass can access superclass’ end
version of the method - ethods

function x= method(arg)

[y= method@Parent(arg);]

X=..Y .
end

end
end

See method dispin TrickDie.m

Lecture 25

Important ideas in inheritance

Keep common features as high in the hierarchy as
reasonably possible

Use the superclass’ features as much as possible

“Inherited” = “can be accessed as though declared
locally”

(private member in superclass exists in subclasses; they
just cannot be accessed directly)

Inherited features are continually passed down the
line

Lecture 25

28

