Previous lecture:

Structure & structure array

e Today’s lecture:

More on structs
Introduction to objects and classes

Announcements:

Project 5 due tonight at | |pm

Do Exercise || question 3.1 and 3.2. Submit them on paper at
the beginning of your next discussion

Prelim 2 on Thurs, Nov 10 at 7:30pm

Prelim 2 topics: end with Project 5 and Lecture 19,i.e., will
NOT include structs and OOP

Review: Re-do discussion/lecture examples, don’t just read
them! Study using posted review Qs. Test yourself using posted
old exams.

Optional review sessions: Sun |-2:30pm and Wedn 8-9:30pm;
see website for details

Different kinds of abstraction

* Packaging procedures (program instructions)
into a function

— A program is a set of functions executed in the
specified order

— Data is passed to (and from) each function
* Packaging data into a structure
— Elevates thinking

— Reduces the number of variables being passed to
and from functions

All possible (i,j,k) combinations but avoid duplicates.
Loop index values have this relationship i <j <k

i j K

| 23
| 2 4
| 25
| 26
| 34
| 35
| 36
| 45
| 4 6
| 56

234
235
236
245
246
256

Lecture 20

345
346

456

356

= 3

for 1=1:n-2

for jJ=i+l:n-1
for k=j+1:n

end
end

A

disp([1 J k1)
end

Still get the same result if all three loop indices end
with n? [[arves | [B:no |

i j Kk
| 23 234 345 456
124 235 346 = _ 4
125 236 356
126 245 R
134
246
135 256 for 1=1:n
| 36 for j=i+l:n
| 45 i — 2 for k=j+1:n
| 46 B disp([i j k1)
156 enj”d
end

1 =1

Lecture 20 4

Structures with array fields

Let’s develop a structure that can be used to represent a
colored disk. It has four fields:

XC: X-coordinate of center
yc: y-coordinate of center

r: radius
C: rgb color vector
Examples:
D1 = struct(“xc’,1,’yc’,2,’r”,3,..

'c’,[1 0 1]);
struct(“xc’,4,’yc”,0,’r?,1,..
’C’1['2 '5 '3]);

D2

Lecture 20 5

Example: Averaging two disks

Lecture 20

D2

Example: Averaging two disks

Lecture 20

D2

Example: Averaging two disks

Lecture 20

D2

Example: compute “average” of two disks

% D1 and D2 are disk structures.
% Average 1s:

r = (P1.r + D2.r) /2;
xXc = (D1l.xc + D2.xc)/2;
yc = (D1l.yc + D2.yc)/2;
c = (DPl.c + D2.c) /2,

% The average 1s also a disk

D = struct(“xc’,xc,’yc’,yc,’r’,r,’c’,C)

Lecture 20 9

How do you assign to g the green-color
component of disk D?

D= struct(“xc’,3.5, “yc’,2, i
‘r’,1.0, “c’,[-4 .1 .5])

Lecture 20

10

A structure’s field can hold a structure

A MakePoiInt(2,3) el that e B
B = MakePoint(4,5) e U
L = struct(“P’,A,“Q”,B)

* This could be used to represent a line segment
with endpoints P and Q, for instance

* Given the MakePoint function to create a point
structure, what is x below!?

X = L.P.y;

Inz] [e3] [ea] [o5] [eamr|

Lecture 20 11

Different kinds of abstraction

* Packaging procedures (program instructions) into a
function

— A program is a set of functions executed in the specified
order

— Data is passed to (and from) each function

* Packaging data into a structure

— Elevates thinking

— Reduces the number of variables being passed to and from
functions

* Packaging data, and the instructions that work on those
data, into an object
— A program is the interaction among objects

— Obiject-oriented programming (OOP) focuses on the
design of data-instructions groupings

A card game, developed in two ways

* Develop the * [dentify “objects” in the game
algorithm—the logic— and define each:
of the card game: — Card
— Set up a deck as an array * Properties: suit, rank
of cards. (First, choose Actions: compare, show
representation of cards.) — Deck
— Shuffle the cards Property: array of Cards
— Deal cards to players * Actions: shuffle, deal, get #cards left
— Evaluate each player’s — Hand ...
hand to determine — Player ...
winner

* Then write the game—the
Procedural programming: algorithm—using objects of
focus on the algorithm, i.e., the above “classes”

the procedures, necessary

for solving a problem

A card game, developed in two ways

* Develop the * [dentify “objects” in the game
algorithm—the logic— and define each:
of the card game: — Card
— Set up a deck as an array Properties: suit, rank
of cards. (First, choose Actions: compare, show
representation of cards.) — Deck
— Shuffle the cards Property: array of Cards
— Deal cards to players * Actions: shuffle, deal, get #cards left
— Evaluate each player’s — Hand ...
hand to determine — Player ...
winner *T Object-oriented
Procedural programming: al programming: focus on the
focus on the algorithm, i.e., th design of the objects (data
the procedures, necessary + actions) necessary for

for solving a problem solving a problem

Notice the two steps involved in OOP!?

* Define the classes (of the objects)

— ldentify the properties (data) and actions
(methods, i.e., functions) of each class

* Create the objects (from the classes) that are
then used—that interact with one another

Defining a class # creating an object

A class is a specification N
— E.g.,a cookie cutter specifies the 3 :
shape of a cookie % <
* An object is a concrete instance of -
the class €0
— Need to apply the cookie cutter to A5 &‘:1
get a cookie (an instance, the object) A ' %)
. LS S . ~
— Many instances (cookies) can be made ™ = €%
using the class (cookie cutter) &N
— Instances do not interfere with one . ”' i
another. E.g., biting the head off one &‘_1
cookie doesn’t remove the heads of D
the other cookies " e

Example class: Rectangle

* Properties:
— xLL, yLL, width, height
* Methods (actions):

— Calculate area

(xLL, yLL)

— Calculate perimeter

— Draw

— Intersect (the intersection between two
rectangles is a rectangle!)

Example class: Time

* Properties:

— Hour, minute, second

* Methods (actions):
— Show (e.g., display in hh:mm:ss format)

— Advance (e.g., advance current time by some
amount)

Example class: Window (e.g., dialog box)

* Properties:

— Size, title, option buttons, input dialog ...

* Methods (actions):

— Show T <]
- Resize Save in:ll.f-‘ work, j L £ ER-

File name: Save

Many such useful
classes have been
predefined!

Save as lype: IFigureg [*.fig) j Cancel

Matlab supports procedural and object-oriented
programming

* We have been writing procedural programs—
focusing on the algorithm, implemented as a
set of functions

* We have used objects in Matlab as well, e.g.,
graphics

* A plot is a““handle graphics” object
— Can produce plots without knowing about objects

— Knowing about objects gives more possibilities

See demoPlotObj.m

