- Previous Lecture:

 Characters and strings

 Today's Lecture:

 More on characters and strings
 Cell arrays
 File input/output

 Announcements:

 Discussion this week in computer lab
 Project 4 due on Wednesday at 11pm
- Example: censoring words

 function D = censor(str, A)
 % Replace all occurrences of string str in
 % character matrix A with X's, regardless of
 % case.
 % Assume str is never split across two lines.
 % D is A with X's replacing str.

 Use MATXXX
 in that XXX

 D

 Function strcmpi
 does case-insensitive
 string comparison

function D = censor(str, A)
% Replace all occurrences of string str in character matrix A,
% regardless of case, with X's.
% A is a matrix of characters.
% Str is a string. Assume that str is never split across two lines.
% D is A with X's replacing the censored string str.

D= A;
ns= length(str);
[nr,nc]= size(A);
% Build a string of X's of the right length
% Traverse the matrix to censor string str

I-d and 2-d examples ... Cell array: individual components may contain Vectors and matrices store different types of data values of the same type in all components -4 -1 'c' 'o' 'm' 5 7 .91 matrix 'M' .4 -1 7 3 × 2 cell array


```
Creating cell arrays...

C = { 'Oct', 30, ones(3,2)};
is the same as

C = cell(1,3); % not necessary

C{1} = 'Oct';

C{2} = 30;

C{3} = ones(3,2);

You can assign the empty cell array: D = {}
```

```
Example: Represent a deck of cards with a cell array

D\{1\} = `A 	ext{ Hearts';}
D\{2\} = `2 	ext{ Hearts';}
\vdots
D\{13\} = `K 	ext{ Hearts';}
D\{14\} = `A 	ext{ Clubs';}
\vdots
D\{52\} = `K 	ext{ Diamonds';}

But we don't want to have to type all combinations of suits and ranks in creating the deck... How to proceed?
```

```
To get all combinations, use nested loops

suit= {'Hearts','Clubs','Spades','Diamonds'};
rank= {'A','2','3','4','5','6','7','8','9',...
'10','J','Q','K'};
i= 1; % index of next card
for k= 1:4
% Set up the cards in suit k
for j= 1:13
    D{i}= [ rank{j} ' ' suit{k} ];
    i= i + 1;
end
end

See function CardDeck
```



```
% Deal a 52-card deck
N = cell(1,13); E = cell(1,13);
S = cell(1,13); W = cell(1,13);

for k=1:13
    N{k} = D{4*k-3};
    E{k} = D{4*k-2};
    S{k} = D{4*k-1};
    W{k} = D{4*k};
end

See function Deal
```


A 3-step process to read data from a file or write data to a file

1. (Create and) open a file
2. Read data from or write data to the file
3. Close the file


```
2. Read each line and store it in cell array

fid = fopen('geneData.txt', 'r');

k= 0;
while ~feof(fid)
k= k+1;
Z{k}= fgetl(fid);
end

Get the next line
```

```
3. Close the file
fid = fopen('geneData.txt', 'r');
k= 0;
while ~feof(fid)
    k= k+1;
    Z{k}= fgetl(fid);
end
fclose(fid);
```

```
function CA = file2cellArray(fname)
% fname is a string that names a .txt file
% in the current directory.
% CA is a cell array with CA{k} being the
% k-th line in the file.

fid= fopen([fname '.txt'], 'r');
k= 0;
while ~feof(fid)
    k= k+1;
    CA{k}= fgetl(fid);
end
fclose(fid);
```

```
Example: subset of clicker IDs
 IDs
                   Find subset that
['d091314'; ...
                   begins with 'h'
  'h134d83'; ...
                                     {'h134d83', ...
  'h4567s2'; ...
                                       'h4567s2'}
  'fr83209']
                              L= {};
L= {};
k=0;
                              for r=1:size(ID,1)
for r=1:size(IDs,1)
                                if IDs(r,1)=='h'
  if IDs(r,1)=='h'
    k=k+1;
                                   L= [L, IDs(r,:)];
    L{k }= IDs(r,:);
                                end
  end
                              end
                                   Concatenate cells or
     Directly assign into a
                                   cell arrays—prone to
     particular cell—good!
                                   problems!
```