= Previous Lecture:

s Characters and strings

m Today’s Lecture:
= More on characters and strings
s Cell arrays

= File input/output

= Announcements:
= Discussion this week in computer lab

= Project 4 due on Wednesday at | |[pm

Example: censoring words

function D = censor(str, A)

% Replace all occurrences of string str in

% character matrix A with X’s, regardless of
% case.

% Assume str 1s never split across two lines.
% D 1s A with X’s replacing str.

D

Function strcmpi
does case-insensitive
string comparison

Lecture 18 6

function D = censor(str, A)

% Replace all occurrences of string str iIn character matrix A,
% regardless of case, with X"s.

% A 1s a matrix of characters.

% str 1s a string. Assume that str is never split across two lines.
% D 1s A with X"s replacing the censored string str.

D= A;
ns= length(str);
[nr,nc]= size(A);

% Build a string of X"s of the right length

% Traverse the matrix to censor string str

Lecture 17

function D = censor(str, A)

% Replace all occurrences of string str iIn character matrix A,

% regardless of case, with X"s.

% A 1s a matrix of characters.

% str 1s a string. Assume that str is never split across two lines.

% D 1s A with X"s replacing the censored string str.
X X X

D= A; 1 2 3 - 8 9 10 11 12

ns= length(str);
% Build a string of X"s of the right length
Xs= char(zeros(1,ns));

for k= 1° ~ ———___ Returns an array of type double
Xs(k)= *"X*;

end Changes the type to char

% Traverse the matrix to censor string str

for r= 1:nr

for c= 1:nc-ns+1
it strempi(str , A(r, c:c+ns-1))==

D(r, c:c+ns-1)= X5,
end \\\\\\\
end

Lecture 17 9

Case insensitive comparison

end of strings

Array vs. Cell Array

= Simple array FCTST F1T1T17T27

= Each component stores one scalar. E.g., one char,
one double, or one uint8 value

= All components have the same type

- 11]-7]
m Cell array {"CJFS" (12 3 11/-1|12|

= Each cell can store something “bigger” than one
scalar, e.g., a vector, a matrix, a string (vector of
chars)

= The cells may store items of different types

Lecture 19 10

|-d and 2-d examples ...
Cell array: individual

Vectors and matrices store components may contain

values of the same type in different types of data

all components
a ™
4 | -1
c |0 |'m
< C >
91 i
4%5 B

5x1 matrix ‘M’ a1 7

matrix _ i J

3 x 2 cell array

Lecture 18 11

Cell Arrays of Strings

C= { “Alabama’,’New York”,’Utah”}

:

C= { “Alabama’;’New York”;’Utah”}

Contrast with

[4 b |
C |"Alabama | 2-darray of characters
“New York~ ! M= [“Alabama ~;
' “‘New York?: ...
| <Utah dl|
1-d cell I
a'ﬂr‘ay of I ‘A, ‘I, ‘a, ‘b, ‘a, ‘m, ‘a, £ e
sTr'mgs N'|‘e |'w Y'|o|r |k
! LU I S S O O R
|
|

Use braces { } for creating and addressing cell arrays

Matrix Cell Array
s Create m Create
m=[5,4; ... C={ones(2,2), 4 P
,2; ... ‘abc’ , ones(3,1); ...
0,8] 9 Lacell }
= Addressing = Addressing
m(2,1)= pi C{2,1}= ‘ABC’
C{3,2}= pi
disp(C{3,2})

Lecture 18 13

Creating cell arrays...

C= {“Oct’, 30, ones(3,2)};
is the same as
C= cell(1,3); % not necessary
C{1}= “Oct’;
C{2}= 30;
C{3}= ones(3,2);

You can assign the empty cell array: D = {}

Example: Represent a deck of cards with a cell array

D{1}
D{2}

‘A Hearts’;
2 Hearts’;

D{13} = “K Hearts’;
D{14} = “A Clubs’;

D{52} = “K Dramonds~’;

But we don’'t want to have to type all combinations of suits
and ranks in creating the deck... How to proceed?

Lecture 18 15

Make use of a suit array and a rank array ...

{“Hearts’, “Clubs”’,
“Spades’, “Dramonds’};
rank — {‘A’,‘Z’,’3’,’4’,’5,,’6,,...
77’] 78’] 797] 7107] ,J7] ,Q7] 7K7};

sult

Then concatenate to get a card. E.g,,

str = [rank{3} “ ” suit{2}];
D{16} = str;

So D{16} stores “3 Clubs”’

Lecture 18 16

To get all combinations, use nested loops

suit= {’Hearts’,’Clubs’,”’Spades”,’Diamonds”’ };

rank= {’A*,727,737,74,757,767,777,78",79",
2107,737,707, K"}

iI= 1; % index of next card

for k= 1:4
% Set up the cards In sult K
for jJ= 1:13
D{1}= [rank{J} ° ° suit{k}];
=1 + 1;
end
end

See function CardDeck

Lecture 18 17

function D = CardDeck()
% D Is 1-by-52 cell array of strings that define a card deck

suit= {’Hearts’,’Clubs’,”’Spades”,’Diamonds”’ };

rank= {’A”,727,737 747,757,767 ,°77,787,797, . _.
2107,737,707, K"}

iI= 1; % index of next card

for k= 1:4
% Set up the cards In sult K
for jJ= 1:13
D{i}= [rank{j} ° " suit{k}];
=1 + 1;
end

end

Lecture 18 18

Example: deal a 12-card deck

CCE BN EENCNNNC

N:Jl BB 1,5,9 4k-3
E-l BBl 2.6,10 4k-2
S BNl 3,7,11 4k-1
WO OO 4.8,12 4k

Lecture 18 19

% Deal a 52-card deck

N = cell

(1,13); E

S = cell(1,13); W

for k=1:
N1k}
E{k}
Sik}

end

13
= D{4*k-3}
= D{4*k-2}
= D{4*k-1}

cell(1,13);
cell(1,13);

See function Deal

20

The “perfect shuffle” of a 12-card deck

A B[R E]ETEEF MR

Lecture 18 21

Perfect Shuffle, Step |: cut the deck
[A] B] [T I ENE] (ST 181] (3] [T [E]

A EEEEE
aln{ofa{s(E

Perfect Shuffle, Step 2: Alternate
[A] B] [T I ENE] (ST 181] (3] [T [E]
[A] (B11<] [o] (=] [F]
3 FIE R EIR

AEERENENERED

Perfect Shuffle, Step 2: Alternate

A B[R E]ETEEF MR

! AEREER

allofala[E
AEERENEEERED

See function Shuffle

25

2.

3.

A 3-step process to
read data from a file or

(Create and) open afile
Read data from or write data to the file
Close the file

Lecture 18

30

Working with data files: Read the data in a file
line-by-line and store the results in a cell array

GATTTCGAG
GAGCCACTGGTC 7
ATAGATCCT GATTTCGAG'
~ ‘GAGCCACTGGTC’ (-
\‘ATAGATCCT’)

geneData.txt

How are lines separated?
How do we know when there are no more lines?

Lecture 18 31

In a file there are hidden “markers”

GATTTCGAG @
GAGCCACTGGTC @

ATAGATCCT @ @ Carriage return marks

the end of a line

geneData.txt

eof marks the end
of a file

Lecture 18

32

2.

3.

Read data from a file

Open a file
Read it line-by-line until eof
Close the file

Lecture 18

33

|. Open the file

fid = fopen(“geneData.txt’,

\

Name of the file
opened. tXt and

An open file has a dat are common file
file ID, here stored name extensions for
in variable Fid plain text files

Built-in function
to open a file

Lecture 18

“‘r’);

‘r’ indicates
that the file
has been
opened for
reading

34

2. Read each line and store it in cell array

fid = fopen(“geneData.txt’, “r’);

k=0 > False until end-of-
while ~Feof(Fid) — files reached
k= k+1;
Z{k}= fgetl(Fid);

end ‘\\\\\\

Get the next line

Lecture 18 35

3. Close the file

fid = fopen(“geneData.txt’, “r’);

k= 0;
while ~feof(fid)

k= k+1;

/{k}= fgetl(fi1d);
end

fclose(fid);

eeeeeeeee

