CS1112 Lecture 13

= Previous Lecture:
= Vectors
= Color computation
= Linear interpolation
= Introduction to vectorized computation

= Today’s Lecture:
= “Clean up” details on vectors
= Vectorized operations
= 2-d array—matrix

= Announcements:
= Discussion this week in classrooms as listed in Student Center
= Prelim | on Oct |3 (Thursday) at 7:30pm

Initialize arrays if dimensions are known
... instead of “building” the array one component
ata time

% Initialize y % Build y on the fly

x=linspace(a,b,n); x=linspace(a,b,n);

y=zeros(1,n);

for k=1:n for k=1:n
y()=myF(x(K)); y(K)=myF(x(K));

end end

Much faster for large nl

Lecture 13 9

Drawing a polygon (multiple line segments)

% Draw a rectangle with the lower-left
% corner at (a,b), width w, height h.

x= [1: % x data
y= 1 1; %y data
plot(x, y)

Fill in the missing vector values!

Lecture 12 10

Coloring a polygon (fill)

% Draw a rectangle with the lower-left
% corner at (a,b), width w, height h,
% and Fill it with a color named by c.
x= [a atw atw a % x data
y=[b b b+h b+h)zf] % y data
fill(x, y, ©)

Built-in function Fill does the
“wrap-around” automatically.

Lecture 12 13

Coloring a polygon (fill)

x= [0.1 -9.2 -7 4.4];
y=[9.4 7 -6.2 -3];
fill(x,y,"g")

Can be a vector
(RGB values)

R S S S S Y

Lecture 12 14

Vectorized code
—a Matlab-specific feature

See Sec 4.1 for list of vectorized
arithmetic operations

= Code that performs element-by-element
arithmetic/relational/logical operations on array
operands in one step

= Scalar operation: x +y
where X, y are scalar variables

» Vectorized code: x +y

where x and/or y are vectors. If x and y are both
vectors, they must be of the same shape and length

Lecture 12 15

Lecture slides

CS1112 Lecture 13

Vectorized addition

x
y
2

+

Matlab code: z= X + VY

Lecture 12 16

Vectorized multiplication

[

X
o

1
(¢

Matlab code: c= a .* b

L]

Lecture 12

s See full list of ops in §4.1
Vectorized
element-by-element arithmetic operations
on arrays

—_

_—

>

f . N

—

Adot (.) is necessary in front of these math operators

Lecture 12 19

Shift

+
<

Matlab code: z= X + VY

Lecture 12

Reciprocate

(2[1]s]s]
(s[1]2]

~
<

1
N

Matlab code: z=

X ./y
1

Lecture 12 21

Lecture slides

Vectorized

See full list of ops in §4.1

element-by-element arithmetic operations between an

array and a scalar

I - | B - DI
I - W B - I
I - | B - DN
EEEEE / |

B -/ PRI
I W B -~ I

Adot (.) is necessary in front of these math operators

Not necessary but OK to use dot: ~ [HH-*[, H-*E ., BE-/H

Lecture 12

CS1112 Lecture 13

i
Can we plot this? See plotConp
oy SME0ERXID o
1+ x? 2 <=x<=3
Yesl!
x = linspace(-2,3,200);

y = sin(5*x).*exp(-x/2)./(1 + x."2);
plot(x,y) "‘ I "‘

Element-by-element arithmetic
operations on arrays

Lecture 12 2

Concatenating 2 vectors—copy 2 vectors into a new one

% given column vectors x and y
v= zeros(length(x)+length(y),1);:
for k=1:length(x)

v(k)= x(K); llv ne2

\%

1
2
n

end
for k=1:length(y) m

v(length(x)+k)= y(k);
end operations ar€
ized code—°P time
This is “on-vedoerlomponem (sca\ar) aca
on on

peﬂormed

Lecture 13 28

Concatenating 2 vectors—copy 2 vectors into a new one

% given column vectors x and y
v= zeros(length(xX)+length(y),1);
for k=1:length(x)

v(K)= x(K);
end
for k=1:length(y)
v(length(X)+k)= y(K):

Split a vector in 2—copy values into 2 vectors

% given row vector v
s= ceil(rand*length(Vv)); % split after v(s)
zeros(1,s);
y= zeros(1, length(v)-s);
for k=1:s
x(k)= v(k);
end
for k=1:length(y)
y(K)= v(s+k);
end

X
1

Below is vectorized code:
multiple components
(subvectors) are
affected/accessed at the same
time:

x= v(l:s);

y= v(s+1:length (v)) s

Lecture 13 £

Lecture slides

Split a vector in 2—copy values into 2 vectors

% given row vector v
s= ceil(rand*length(v)); » split after v(s)
12 .5 gx¥g¥h,
x= zeros(1,s); \%
NN

y= zeros(1, length(v)-s); R 2 .. s R
for k=1:s

endX(k)_ vao: This is n0“'VeFt°sr ;lrzd
code”OPeraﬂon
for k=1:length(y) erformed on one s
Y(O= v(stk): {gmponent (sca)?
end time

End of
Prelim 1 material

Lecture 13 35

CS1112 Lecture 13

C

Storing and using data in tables 2-d array: matrix T

r :H:::

= An array is a named collection of like data organized
into rows and columns

A company has 3 factories that make 5
products with these costs:

101 36| 22| 15] 62 Connections = A 2-d array is a table, called a matrix
c 12| 35| 201 12| 68 between webpages = Two indices identify the position of a value in a matrix,
0010100 &8
13| 37| 21| 16] 59 1001110 mat(r,c)
(1) (1) (1) 1 (1) 1 (1) refers to component in row r, column c of matrix mat
What is the best way to fill a given :
purchase order? 0011011 = Array index starts at 1
0010101 = Rectangular: all rows have the same #of columns
0110110

Lecture 13 36 Lecture 13 a7

Creating a matrix Working with a matrix: 2|-1|5|0|-3
sSize and individual components slel7l7
= Built-in functions: ones, zeros, rand = 3lesl s |10
= Eg., zeros(2,3) gives a 2-by-3 matrix of Os Given a matrix M .
= E.g, zeros(2) gives a 2-by-2 matrix of Os i i 52/81].5] 7|2
= “Build” a matrix using square brackets, [], but [nhr. nc]l= size(M) % nr is #of rows,
the dimension must match up: T) % nc is #of columns
= [x y] putsy to the right of x sl1]9] nr= sze(M’ 1) % # of rows
= 0,
Dol pusybelows nc= size(M, 2) % # of colums
= [403;5 | 9] creates the matrix ‘m M(2,4)= 1;
= [4 0 3; ones(1,3)] gives disp(M(3,1))
= [4 0 3; ones(3,1)] doesn’t work M(L,nc)= 4;
Example: minimum value in a matrix Pattern for traversing a matrix M
function val = minInMatrix(M) [, 3| = S
o . . . for r= l:nr
% val is the smallest value in matrix M o
% At row r

for ¢= I:nc
% At column c (in row r)
%
% Do something with M(r,c) ...
end
end

Lecture 13 5 Lecture 13 a7

Lecture slides

CS1112 Lecture 13

Matrix example: Random Web
= N web pages can be represented by an §
N-by-N Link Array A.
= A(ij) is | if there is a link on webpage j to
webpage i
= Generate a random link array and display the
connectivity:
= There is no link from a page to itself
« If i#j then A(i) = | with probability T
There is more likely to be a link if i is close to j

Lecture slides

function A = RandomLinks(n)
% A Is n-by-n matrix of 1s and Os
% representing n webpages

A = zeros(n,n);
for 1=1:n
for j=1:n
r = rand(1);
if i—=j && r<= 1/(1 + abs(i-}));
ACELT) = 15
end
end
end

Lecture 13 49

