= Previous Lecture:
= Vectors
s Color computation
= Linear interpolation
= Introduction to vectorized computation

m Today’s Lecture:
s “Clean up” details on vectors
= Vectorized operations
s 2-d array—matrix

= Announcements:

s Discussion this week in classrooms as listed in Student Center

= Optional review sessions on Oct |12 (Wednesday): 5-6:30pm
and 7:30-9pm. Both in Olin Hall room 255.

s Prelim | on Oct |3 (Thursday) at 7:30pm

Initialize arrays if dimensions are known

... instead of “building” the array one component
at a time

% Inttialize y % Build y on the fly

x=l1nspace(a,b,n); x=l1nspace(a,b,n);

y=zeros(l,n);

for k=1:n for k=1:n
y(K)=myF(x(K)); y(K)=myF(x(K));

end end

T

Much faster for large nl

Lecture 13

Drawing a polygon (multiple line segments)

% Draw a rectangle with the lower-left
% corner at (a,b), width w, height h.

x= [1. % x data
y= [1: % y data
plot(x, y)

Fill in the missing vector values!

Lecture 12 10

Drawing a polygon (multiple line segments)

% Draw a rectangle with the lower-left
% corner at (a,b), width w, height h.
x= [a atw at+tw a a]; % x data
y=[b b b+h b+h Db]; % y data

plot(x, y)

Lecture 12 11

Coloring a polygon (fill)

% Draw a rectangle with the lower-left
% corner at (a,b), width w, height h,
% and fi1ll 1t with a color named by c.
x= [a atw at+tw a alj; % x data
y=[b b b+h b+h Db]; % y data
fill(x, y, ©)

\ A built-in function

Lecture 12 12

Coloring a polygon (fill)

% Draw a rectangle with the lower-left
% corner at (a,b), width w, height h,
% and fi1ll 1t with a color named by c.
x= [a atw atw a /a]; % x data
y=[b b b+h b+h /b]; % y data
fill(x, y, ©)

Built-in function Fill does the
“wrap-around” automatically.

Lecture 12 13

Coloring a polygon (fill)
x= [0.1 -9.2 -7 4.4];
y=19.4 7 -6.2 -3];
Fill(x,y,"g")

10
gL
6L

Can be a vector
(RGB values)

Vectorized code

—a Matlab-specific feature

See Sec 4.1 for list of vectorized
arithmetic operations

s Code that performs element-by-element
arithmetic/relational/logical operations on array
operands in one step

= Scalar operation: x +y

where X, y are scalar variables

m Vectorized code: x +y

where x and/or y are vectors. If x and y are both
vectors, they must be of the same shape and length

Lecture 12 15

Vectorized addition

[
N
w
w
ol
©

Matlab code: z= X + Yy

Lecture 12 16

Vectorized subtraction

X 1
_ Y 2
— v -1

Matlab code: Z

Lecture 12

17

Vectorized multiplication

Matlab code: C= a

* Db

1

Lecture 12

18

See full list of ops in §4.1

Vectorized
element-by-element arithmetic operations
on arrays

A dot (.) is necessary in front of these math operators

Lecture 12 19

Shift

[
N

Matlab code: z= X + VY

Lecture 12

Reciprocate

X
/ y 8
— y4 125
X /Yy

Matlab code: z=

Lecture 12

21

See full list of ops in §4.1

Vectorized
element-by-element arithmetic operations between an
array and a scalar

(T + [O + [T
T - O O - [T
i e Rl 5
TT1T1] 7 [

O -/ [T
IEEEEE -~ R i 5

A dot (.) is necessary in front of these math operators

Not necessary but OK to use dot: -0 . B-*00 . 0-700

Lecture 12 22

See plotComparison.m

Can we plot this!?

sin(5x) exp(—x/2) for
1+ X° 2 <=x<=3

f(X) =

Yesl!

x = linspace(-2,3,200);
y = sin(®*x).*exp(-x/2) ./(1 + X."2);

plot(x,y) T T 1 |

Element-by-element arithmetic
operations on arrays

Lecture 12 23

Concatenating 2 vectors—copy 2 vectors into a hew one

% given column vectors x and y
v= zeros(length(x)+length(y),1);
for k=1:length(x)

v(K)= x(K):

end

Lecture 13

—> 1
—> 2

[

27

Concatenating 2 vectors—copy 2 vectors into a hew one

% given column vectors x and y
v= zeros(length(x)+length(y),1); !

for k=1:length(x) : :

v(k)= x(K); 1 :;:§
end : |
for k=1:length(y) m

v(length(x)+k)= y(Kk);
end

Lecture 13 28

Concatenating 2 vectors—copy 2 vectors into a hew one

% given column vectors x and y
v= zeros(length(x)+length(y),1);
for k=1:length(x)

v(K)= Xx(K):
end
for k=1:length(y)
v(length(xX)+k)= y(k):

Lecture 13 29

Split a vector in 2—copy values into 2 vectors

% given row vector v
s= cell(rand*length(v)); u split after v(s)
1 2 ... s

x= zeros(1,s); v
y= zeros(1l, length(v)-s); Xiz."s
for k=1:s

x(k)= v(Kk);

end

Lecture 13

Split a vector in 2—copy values into 2 vectors

% given row vector v
s= ceill(rand*length(v)); % split after v(s)

2 ... S g’("g’(.

x= zeros(1,s); v I
— - 1 2 ..s \1\2
y= zeros(l,length(v)-s); 2. .

for k=1:s
xX(k)= v(k); zed

end This | s are
T k=1:1 h code/OPe"E‘t‘o .
or —1 - engt (y) erformed on on ‘a
y(k)= v(s+h); component (scalar) 2

end gime

Lecture 13 33

Split a vector in 2—copy values into 2 vectors

% given row vector v
s= cell(rand*length(v)); u split after v(s)

x= zeros(1,s);

y= zeros(1l, length(v)-s);

for k=1:s
x(K)= v(K);

end
for k=1:length(y)

y(k)= v(s+k);
end

Below is vectorized code:
multiple components

(subvectors) are
affected/accessed at the same

time:
x= v(l:8)’
y= v(s+1:length(v));

Lecture 13 N

End of
Prelim 1 material

Lecture 13

35

e 5
i o 2
7 c

O
O

(7,)
L
QO

S

)
=

(qv]

)

(q°]
-

oV
=

(V)

)
-

C

(qv]

0.0
=

.

O

e’
V)

A company has 3 factories that make 5

products with these costs

between webpages

OC O HO A AO
O A A A 1 O
I 4 4O O A
O cd A+ —+d O O
— O O «d A —
OO HOOO -
O -1 O —+1 OO0
c
)
=
00
<
ﬁ.l”
@)
s
-
3
e
]
23
C
25
)
v wm
o &
FY
Wu
o

36

Lecture 13

C

&
= An array is a named collection of like data organized
into rows and columns

2-d array: matrix

s A 2-d array is a table, called a matrix

= Two indices identify the position of a value in a matrix,
e.g.,

mat(r,cC)
refers to component in row r, column c of matrix mat
= Array index starts at 1

m Rectangular: all rows have the same #of columns

Lecture 13 37

2-d array: matrix N :
&
7N
= An array is a named collection of like data organized
into rows and columns

s A 2-d array is a table, called a matrix

= Two indices identify the position of a value in a matrix,
e.g.,

mat(r,cC)
refers to component in row r, column c of matrix mat
= Array index starts at 1

m Rectangular: all rows have the same #of columns

Lecture 13 38

Creating a matrix

m Built-in functions: ones, zeros, rand
s E.g., zeros(2,3) gives a 2-by-3 matrix of Os
= E.g., zeros(2) gives a 2-by-2 matrix of Os

= “Build” a matrix using square brackets, [], but
the dimension must match up:

4,103
= [X y] putsy to the right of x 50109
= [x; y] putsy below x / T
= [40 3;5 | 9] creates the matrix 1011

= [4 0 3; ones(l,3)] gives _—

= [4 0 3; ones(3,1)] doesn’t work

Lecture 13 39

Working with a matrix: 2

’ 1/.5|0(-3
S1ze and individual components

318|6 |7 |7

Given a matrix M [> | 38> 9 |10

52|81 .5|7 |2

[nr, nc]= size(M) % nr i1s #of rows,
% nc 1s #of columns

nr= size(M, 1) % # of rows

nc= size(M, 2) % # of columns

M(2,4)= 1:

disp(M(3,1))
M(1,nc)= 4,

Lecture 13

40

Example: minimum value in a matrix

function val = minlnMatrix(M)

% val is the smallest value in matrix M

Lecture 13

45

|2 = €

Example: minimum value in a matrix

\..1»

function val = minlnMatrix(M)

% val is the smallest value in matrix M
[nr, nc] =Size M),

val = M(l,l))'
T = yoar
7oAt Fow p

for ¢ =|:nc
% At cof ¢ (af rewo ")
7)8 M(r,) < val
%JMzM(C()/‘
thd
end

Lecture 13

46

Pattern for traversing a matrix M

[nr, nc] = size(M)
for r= linr
7% At row r
for ¢= l:nc
% At column c (in row r)
%
7% Do something with M(r,c) ...
end
end

Lecture 13

47

