
CS1112 Lecture 11

Lecture slides 1

 Previous Lecture:
 1-d array—vector
 Probability and random numbers

 Today’s Lecture:
 More examples on vectors and simulation

 Announcements:
 Discussion this week in the computer lab
 Project 3 due on Mon 10/3

Lecture 11 2

Simulation

 Imitates real system
 Requires judicious use of random numbers
 Requires many trials
  opportunity to practice working with vectors!

N = 11 Hops = 67

Lecture 10 3

Simulation result

51 60 59 55 59 54
1 2 3 4 5 6

1 2 3 4 5 6
0

10

20

30

40

50

60

bar(1:6, count)

Bin numbers

Data in bins

Lecture 10 4

Keep tally on repeated rolls of a fair die

Repeat the following:

% roll the die

% increment correct “bin”

Lecture 10 6

function count = rollDie(rolls)

FACES= 6; % #faces on die

count= zeros(1,FACES); % bins to store counts

% Count outcomes of rolling a FAIR die

for k= 1:rolls

% Roll kth die

face= ceil(rand*FACES);

% Increment the appropriate bin

end

% Show histogram of outcome

0 0 0 0 0count 0

1 43 5 62

% Count outcomes of rolling a FAIR die

count= zeros(1,6);

for k= 1:100

face= ceil(rand*6);

if face==1

count(1)= count(1) + 1;

elseif face==2

count(2)= count(2) + 1;

⋮
elseif face==5

count(5)= count(5) + 1;

else

count(6)= count(6) + 1;

end

end

0 0 0 0 0count 0

1 43 5 62

From rollDieV1.m

CS1112 Lecture 11

Lecture slides 2

Lecture 10 9

function count = rollDie(rolls)

FACES= 6; % #faces on die

count= zeros(1,FACES); % bins to store counts

% Count outcomes of rolling a FAIR die

for k= 1:rolls

% Roll kth die

face= ceil(rand*FACES);

% Increment the appropriate bin

count(face)= count(face) + 1;

end

% Show histogram of outcome

0 0 0 0 0count 0

1 43 5 62

Lecture 10 10

% Simulate the rolling of 2 fair dice
totalOutcome= ???

ceil(rand*12)

ceil(rand*11)+1

floor(rand*11)+2

2 of the above
None of the above

A

B

C

D

E

Lecture 11 16

2-dimensional random walk
N = 11 Hops = 67

Start in the middle tile,
(0,0).

For each step,
randomly choose
between N,E,S,W and
then walk one tile.
Each tile is 1×1.

Walk until you reach
the boundary.

Lecture 11 17

function [x, y] = RandomWalk2D(N)

% 2D random walk in 2N-1 by 2N-1 grid.

% Walk randomly from (0,0) to an edge.

% Vectors x,y represent the path.

x

y

By the end of the function …

function [x, y] = RandomWalk2D(N)

k=0; xc=0; yc=0;

while not at an edge

% Choose random dir, update xc,yc

% Record new location in x, y

end

Lecture 11 21

% Standing at (xc,yc)
% Randomly select a step

r= rand(1);
if r < .25

yc= yc + 1; % north
elseif r < .5

xc= xc + 1; % east
elseif r < .75

yc= yc -1; % south
else

xc= xc -1; % west
end

See RandomWalk2D.m

CS1112 Lecture 11

Lecture slides 3

Lecture 11 22

Another representation for the random step

 Observe that each update has the form
xc= xc + ∆x
yc= yc + ∆y

no matter which direction is taken.
 So let’s get rid of the if statement!
 Need to create two “change vectors” deltaX and

deltaY
deltaX

deltaY

See RandomWalk2D_v2.m

Lecture 11 24

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Example: polygon smoothing

Can store the x-y
coordinates in
vectors x and y

x y

Lecture 11 25

−3 −2 −1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

After

Before

First operation: centralize

Move a polygon so that the centroid
of its vertices is at the origin

Lecture 11 26

function [xNew,yNew] = Centralize(x,y)

% Translate polygon defined by vectors

% x,y such that the centroid is on the

% origin. New polygon defined by vectors

% xNew,yNew.

Lecture 11 30

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Before

After

Second operation: normalize

Shrink (enlarge) the polygon so that
the vertex furthest from the
(0,0) is on the unit circle

Lecture 11 31

function [xNew,yNew] = Normalize(x,y)

% Resize polygon defined by vectors x,y

% such that distance of the vertex

% furthest from origin is 1

CS1112 Lecture 11

Lecture slides 4

Lecture 11 34

−1.5 −1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Third operation: smooth

Obtain a new polygon by connecting
the midpoints of the edges

Lecture 11 35

function [xNew,yNew] = Smooth(x,y)
% Smooth polygon defined by vectors x,y
% by connecting the midpoints of
% adjacent edges

n = length(x);
xNew = zeros(n,1);
yNew = zeros(n,1);
for i=1:n

%Compute midpt of ith edge. Store in xNew(i), yNew(i)

end

Lecture 11 36

xNew(1) = (x(1)+x(2))/2
yNew(1) = (y(1)+y(2))/2

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Lecture 11 39

% Given n, x, y
for i=1:n

xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

end

Polygon Smoothing

Does above fragment compute the new n-gon?
A: Yes

B: No

Lecture 11 45

Show a simulation of polygon smoothing

Create a polygon with randomly located vertices.

Repeat:
Centralize
Normalize
Smooth

See ShowSmooth.m

