Project 1 Grading Guide

Item no.	Description	Correctness	Style
PROBLEM 1	platonicSol.m	Total = 10	Total = 4
1	Interprets the outradius <i>R</i> for use with the inscribed shapes, and the inradius <i>r</i> for use with the circumscribed shapes.		1
2	Calculates the edge length <i>E</i> given a radius.	1	
3	Uses correct equation to calculate the volume of the solids. Circumscribed (2c), Inscribed (2c). Allow partial award in 1 point increments for small mistakes. (NOTE: as stated in the errata for <i>Insight</i> , the divisor for calculating Vol20 should be 12, not 4, i.e., Vol20 = ((15 + 5*sqrt(5))/12)*E^3;)	4	
4	For the calculation of volume, the student does not write one long equation for <i>V</i> , substituting equations for <i>E</i> as necessary. Instead, the student separates the calculation into natural equations (1s), including an appropriate variable for each (1c). i.e. The student uses the radius to calculate edge	1	1
	length first, and then uses the value of edge length to find the volume.		
5	Indicates that the icosahedron is the circumscribed solid closest to volume of sphere.	1	
6	Indicates that the dodecahedron is the inscribed solid closest to the volume of sphere. For items 5 and 6 do not double count the penalty if a mistake was made in calculating the volumes but the indicated solids follow from the calculation.	1	
7	For the table, use fprintf (1c), use appropriate formatting sequence for each row of their results (1c), and have columns nicely lined up (1s).	2	1
8	Has all results in one table. If inscribed and circumscribed volumes appear in one table, the point is satisfied and any extraneous tables should be ignored.		1
PROBLEM 2	parallelogram.m	Total = 6	Total = 4
9	Both variables x and y are set to a random number in the interval (1,9).	3	

	Uses built-in function rand() twice, once for each x and y. (1c) Scales the result of rand() by 8. (1c) Shifts the result of rand() by 1. (1c)		
10	Correctly calculates fourth point, partial award in 1 point increments allowed for small mistakes.	2	
11	Use an if statement (1s) to correctly check (1c) if the fourth point is within (0 to 10) for x and y. This may be inclusive or exclusive.	1	1
12	Display an appropriate message with the fourth point for parallelogram drawn (1s), and for the fourth point not within bounds. (1s)		2
13	Draw the remaining lines of the parallelogram in any color or style.		1
PROBLEM 3	myParabola.m	Total = 4	Total = 2
14	Prompt user for input values: a,b,c,L,R.		1
15	Prompts are clear and indicate input assumptions: a~=0, L <r. a="" are="" attached="" but="" do="" it="" item,="" make="" no="" note="" of="" points="" student.<="" td="" the="" this="" to=""><td></td><td></td></r.>		
16	Correctly compute the critical value: xc =b / (2*a).	1	
17	Compute the min and max values of f(x) when for each of the following four cases. (2c: 1 point for at least 2 cases correct, 2 points for all correct, award at most 1 point if only one of a < 0 or a > 0 is considered.)	2	
18	Case 1: L< xc < R and a>0 eg: a=2, b=3, c=4, L=2, R=6 => fmin=2.875, fmax=58		
19	Case 2: L< xc < R and a<0 eg: a=-3, b=4, c=5, L=-10, R=10 min=335, fmax=6.333		
20	Case 3: L > xc or xc > R eg: a=3, b=4, c=2, L=2, R=3 => fmin=17, fmax=6		
21	Case 4: L = xc or xc = R eg: a=1, b=4, c=6, L=2, R=2 => fmin=10, fmax=6 eg: a=1, b=4, c=4, L=2, R=2 => fmin=8, fmax=8		

22	Display the minimum and maximum values of f(x) on the interval (1c). Results are labeled and formatted (1s).	1	1
GENERAL			Total=10
23	Script starts with a concise comment describing the program. Function comment follows function header.		1
24	Code is sufficiently (but not excessively) commented.		1
25	Line lengths are not excessively long (80 columns). NOTE: It's ok if a couple lines are a little too long, especially if they are print statements		1
26	No extra output (debugging output) produced		1
27	Proper indentation is always used.		1
28	Use meaningful variable names. Do not overwrite MATLAB keywords.		1
29	Name important parameters as variables (constants).		1
30	No superfluous code (e.g., an empty if or else branch or a useless loop). Of course some students will have code that is awkward or unclear or inefficient. This point is specifically for not having code that does literally nothing.		1
31	Reasonably efficient code.		1
32	Does NOT put semicolon at wrong places, e.g., at the end of these lines: "if", "elseif", "else"," for","while", "function".		1
TOTAL		20	20

Penalties

P1	Student's code does not execute (or student provides a script when a function is required and vice-versa)	-1 from final score
P2	Student's code crashes or does not terminate (infinite loop) for normal cases.	-1 from final score
P3	All function headers and file names match those specified in the project description exactly. All input and output	-1 from final score

variables should be of the correct type.	
--	--

Grade Calculation

Total Possible Correctness Points	TC = 20
Total Possible Style Points	TS = 20
Student Correctness Points	C = min(+ 1 freebie point, TC)
Student Style Points	S = min(+ 1 freebie point, TS)

Exceptions: If any file is missing/unacceptable, no freebie points can be applied to that file and subtract 3 style points for each missing/unacceptable file.

Student's final score	([(C/(TC))+(S/TS)] X 5) - Penalties
	(Out of 10; 1 decimal; no negative score; round to NEAREST)