Project 5 grading guide

Fixes/Updates:

1. The typo in #24 has been corrected

2. #12 is now worth 1 correctness point, not 1 style point

3. #35: by reasonably efficient, I mean that their code takes more than 10x longer than the solution code

4. #27 is now worth 1 point, and is awarded if the student uses the correct formulae for both score and percent decrease, regardless of whether the values are right

5. If a student uses sq. meters instead of sq. miles, take the point off from #3

6. If a student made a jagged cell array (a cell array where each entry is a cell array), don’t take points off as the writeup didn’t explicitly say they had to make a 2d cell array.

7. #8, if a student does anything other than store their data in 2 1-d normal struct arrays, they don’t get this point

8. #40, award these points if the 4 chosen zipcodes are correct within +/- 1 people, regardless of whether the total file was the same length as the solution file
Note:
1. Regarding #17 if the rural zipcode’s type is checked every time people are moved to it, then no points
	#
	C
	S
	Description

	1.

	---------------------------------------Project 5--

	2.
	
	
	makeZipcode.m

	3.
	1
	
	Struct has all the appropriate fields (zip, pop, area, density, latitude, longitude)

	4.

	readZipcode.m

	5.
	2
	
	All file operations correct (-1 for each error, -2 max) [fopen, feof, fgetl, fclose]

	6.
	1
	
	Data from file is converted to proper data types (zip: string, rest: double)

	7.
	1
	
	Uses makeZipcode to create structs

	8.
	1
	
	Uses rThresh to put structs in appropriate struct arrays

	9.

	balancePopulation.m

	10.
	1
	
	Only move people from zipcodes denser than suThreshValue

	11.
	1
	
	p% of the super urban(SU) zipcode’s population is moved

	12.
	1
	
	Only whole people are moved to a new zipcode

	13.
	1
	
	The SU zipcode’s density is recalculated with new population

	14.
	1
	
	Check new density of SU zipcode to determine new type (Rural, U, SU)

	15.
	1
	
	The moving population is moved to the nearest rural zipcode

	16.
	1
	
	A row in filedata with the correct data is added for every SU zipcode

	17.
	1
	
	Rural zipcodes population includes incoming people from multiple SU zips

	18.
	1
	
	Update density of rural zipcode which had people moved to them

	19.
	1
	
	Check rural zipcodes once to determine their type (Rural, U, SU)

	20.

	zipcodeBalancer.m

	21.
	
	1
	Doesn’t make repeated calls into struct arrays for latitudes and longitudes

	22.
	1
	
	Calculates the minimum distance between zipcodes correctly

	23.
	1
	
	nearestRural 2-d array is created properly

	24.
	2
	
	All file operations correct (-1 for each error, -2 max) [fopen, fprintf, fclose]

	25.
	1
	
	Loops over all super urban thresholds

	26.
	1
	
	Calls balancePopulation

	27.
	1
	
	Uses the right formulae for calculating score and percent decrease

	28.
	1
	
	Keeps track of the optimal threshold and score

	29.
	
	1
	Names both files appropriately

	30.
	1
	
	Writes each threshold’s percent decreases and score to thresholdData.dat

	31.
	1
	
	Uses fileData from optimal threshold to write data to optThresholdData.dat

	32.
	
	1
	Data written to the two files is in a neatly formatted

	33.

	Testers

	34.
	1
	
	Student’s balancePopulation passes

	35.
	
	1
	Student’s code is reasonably efficient

	36.
	1
	
	Student’s code finds the correct optimal threshold

	37.
	1
	
	Student’s threshold.dat has the right ordering of scores and percent decreases

	38.
	1
	
	Student’s threshold.dat has the correct scores and percent decreases

	39.
	1
	
	Student’s output files are the same length as the solution’s

	40.
	1
	
	Student’s optThreshold.dat matches the solution

	41.

	---------------------------General--

	42.
	
	1
	Script starts with a concise comment describing the program

	43.
	
	1
	Function comment follows the function header and gives the specifications concisely, including descriptions of the parameters

	44.
	
	1
	Code is sufficiently (but not excessively) commented

	45.
	
	1
	Line lengths are not excessively long (80 columns)

	46.
	
	1
	No extra output (debugging output) produced

	47.
	
	1
	Proper indentation is always used

	48.
	
	1
	Use meaningful variable names

	49.
	
	1
	Name important parameters as variables (constants)

	50.
	
	1
	No superfluous code (e.g., an empty if or else branch or a useless loop)

	51.
	
	1
	Does NOT put semicolon at wrong places, e.g., at the end of these lines: "if", "elseif", "else", "for", "while", "function"

	52.
	32
	14
	

==

PENALTIES

P1 Student's code does not execute (or student provides a script when a

 function is required and vice-versa) -1 from final score

P2 Student's code crashes or does not terminate

 (infinite loop) for normal cases -1 from final score

==

GRADE CALCULATION

Total Possible Correctness Points: TC = 32
Total Possible Style Points: TS = 14
Student Correctness Points: C = min(___ + 1 freebie point, TC)

Student Style Points: S = min(___ + 1 freebie point, TS)

Exceptions: If any file is missing/unacceptable, no freebie points can be applied to that file and subtract 3 style points for each missing/unacceptable file.

Student's final score: ([(C/(TC))+(S/TS)] X 5) - Penalties

 (Out of 10; 1 decimal; no negative score; round to NEAREST)

==
