Project 4 grading guide

Changes:

1. Changed description in Note(1), to #28.

2. Separate #6 into #6, #7.
3. Changed #15. two ginput(1) is fine.
4. Added #18.

5. Changed Note(2).b. to test whether the code do sorting or not. (#19)

6. Added #22.

7. Added printing of number of misplacement in tester.m, if the result is wrong.

Note:
1. Use tester.m to test smoothImage.m and sharpenImage.m. To use tester.m, copy all files in test directory to destiny directory. It will output test result for the two programs. When running it, be aware of #25. (#25 is a requirement in testing smoothImage.m and sharpenImage.m, but not required when testing showSharpen.m)
2. #18: Test showSharpen.m in all of the following test cases:
a. Two points within image area

b. One point within image area, the other in upper left area outside the image

c. One point in lower left area outside the image, the other in upper right area outside the image.

In case (c), the effect should be sharpening the whole image.

3. Use following command to test showSharpen.m:

showSharpen(‘duck2.jpg’,2,2)
	#
	C
	S
	Description

	1.

	---------------------------------------Project 3--

	2.
	
	
	smoothImage.m

	3.
	
	1
	Function parameters are consistent with specifications in project description. Function comment follows the function header and gives the specifications concisely, including descriptions of the parameters

	4.
	1
	
	Initialize Q to be unit8 array with correct size, or initialize Q to be a double array with correct size, then truncate it to unit8 array at last.

	5.
	1
	
	Correct calculation of neighborhood area. Correct handling of margin area.

	6.
	1
	
	Value of Q(i,j,k) gets the mean value of neighhood(:,:,k), for each i,j,k.

	7.
	1
	
	Mean value of neighhood(:,:,k) is computed correctly

	8.
	
	
	sharpenImage.m

	9.
	
	1
	Function parameters are consistent with specifications in project description. Function comment follows the function header and gives the specifications concisely, including descriptions of the parameters

	10.
	1
	
	Return value S has unit8 type

	11.
	1
	
	Correct calculation of S

	12.
	
	
	showSharpen.m

	13.
	1
	
	Function comment follows the function header and gives the specifications concisely, including descriptions of the parameters

	14.
	1
	
	prompt the user to click two points to select an area for sharpening

	15.
	1
	
	Record use input using ginput(2) or two ginput(1)

	16.
	1
	
	Show the status on the title area of the image when processing. Just a single word is fine.

	17.
	1
	
	Round the mouse clicked values into integers correctly. If outside the image, round to the nearest point.

	18.
	2
	
	Sharpen image correctly in three test cases (-1 for each; -2 max)

	19.
	1
	
	Sort the input points appropriately.

	20.
	1
	
	Use function smoothImage and sharpenImage correctly, with correct parameters.

	21.
	1
	
	Show the two images, unsharpen and sharpen, with proper title

	22.
	1
	
	F gets the sharpened image value in uint8 array finally.

	23.

	---------------------------General--

	24.
	
	
	Script starts with a concise comment describing the program

	25.
	
	
	Function comment follows the function header and gives the specifications concisely, including descriptions of the parameters

	26.
	
	1
	Code is sufficiently (but not excessively) commented

	27.
	
	1
	Line lengths are not excessively long (80 columns)

	28.
	
	1
	No extra output (debugging output) produced

	29.
	
	1
	Proper indentation is always used

	30.
	
	1
	Use meaningful variable names

	31.
	
	
	Name important parameters as variables (constants)

	32.
	
	1
	No superfluous code (e.g., an empty if or else branch or a useless loop)

	33.
	
	1
	Reasonably efficient code

	34.
	
	1
	Does NOT put semicolon at wrong places, e.g., at the end of these lines: "if", "elseif", "else", "for", "while", "function"

	35.
	17
	10
	

==

PENALTIES

P1 Student's code does not execute (or student provides a script when a

 function is required and vice-versa) -1 from final score

P2 Student's code crashes or does not terminate

 (infinite loop) for normal cases -1 from final score

==

GRADE CALCULATION

Total Possible Correctness Points: TC = 17
Total Possible Style Points: TS = 10
Student Correctness Points: C = min(___ + 1 freebie point, TC)

Student Style Points: S = min(___ + 1 freebie point, TS)

Exceptions: If any file is missing/unacceptable, no freebie points can be applied to that file and subtract 3 style points for each missing/unacceptable file.

Student's final score: ([(C/(TC))+(S/TS)] X 5) - Penalties

 (Out of 10; 1 decimal; no negative score; round to NEAREST)

==
