Previous Lecture:

- Nesting if-statements
- Boolean operations (relational, logical)
- Logical operators short-circuit
- Today's Lecture:
- Iteration using for
- Announcement
- Discussion this week in classrooms as listed on roster

Simulation:

use code to imitate the physical experiment
\% one trial of the experiment breakPt= rand(1);
if breakPt<0.5
shortPiece= breakPt;
else
shortPiece= 1-breakPt;
end

```
n= 10000; % number of trials
total= 0; % accumulated length so far
for k= 1:n
    % one trial of the experiment
    breakPt= rand(1);
    shortPiece= min(breakPt, 1-breakPt);
    total= total + shortPiece;
end
aveLength= total/n;
fprintf('Average length is %f\n', ... 
fprintf('Average length is %f\n', ... 
Lectres

\section*{Question}

A stick of unit length is split into two pieces. The breakpoint is randomly selected. On average, how long is the shorter piece?

Physical experiment? *
Thought experiment? \(\rightarrow\) analysis
Computational experiment! \(\rightarrow\) simulation
Need to repeat many trials!
ectures

Repeat \(n\) times
\% one trial of the experiment breakPt= rand(1);
shortPiece= min(breakPt, 1-breakPt);

Take average
Print result

Important Features of Iteration
- A task can be accomplished if some steps are repeated; these steps form the loop body
- Need a starting point
- Need to know when to stop
- Need to keep track of (and measure) progressupdate

Monte Carlo Approximation of \(\pi\)

```

Monte Carlo }\pi\mathrm{ with N darts on L-by-L board
for k = 1:N
% Throw kth dart
% Count it if it is in the circle
end
myPi = 4*hits/N;

Loop header specifies all the values that the index variable will take on, one for each pass of the loop.
E.g, $k=3: 1: 7$ means k will take on the values $3,4,5,6$, 7, one at a time.

Pattern for doing something n times
$\mathrm{n}=$ \qquad
for $k=1: n$
\% code to do
\% that something
end

	loop examples
```for k= 2:0.5:3 disp(k) end for k= 1:4 disp(k) end for k= 0:-2:-6 disp(k) end for k= 0:-2:-7 disp(k) end for k= 5:2:1 disp(k) end```	k takes on the values $\qquad$ Non-integer increment is OK
	k takes on the values $\qquad$ Default increment is I
	k takes on the values $\qquad$ "Increment" may be negative
	k takes on the values $\qquad$ Colon expression specifies a bound
	Letures ${ }^{26}$





$\begin{aligned} & \text { for } \begin{array}{l} k=4: 6 \\ \\ \quad \operatorname{disp}(k) \\ k=9 ; \\ \\ \text { disp(k) } \end{array} \\ & \text { end } \end{aligned}$	-		With this loop header, k "promises"		
		to be these values, one at a time   Output in Command Window			
k					
Lecture ${ }^{31}$					



