- Previous Lecture:
- Branching (if, elseif, else, end)
- Relational operators (<, >=, ==, $\sim=, \ldots$, etc.)
- Today's Lecture:
- Logical operators (\&\&, ||, ~), "short-circuiting"
- More branching-nesting
- Top-down design
- Announcements:
- Project I (PI) due today at IIpm
- Submit real .m files (plain text, not from a word processing software such as Microsoft Word)
- Please fill out beginning-of-semester survey, see course website

Modified Problem 3
Write a code fragment that prints
"yes" if xc is in the interval and "no"
if it is not.

The value of a boolean expression is either true or false.

$$
(L<=x c) \& \& \quad(x c<=R)
$$

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:

and	or	not	
\&\&	\|		\sim

Things to know about the if construct

- At most one branch of statements is executed
- There can be any number of elseif clauses
- There can be at most one else clause
- The else clause must be the last clause in the construct
- The else clause does not have a condition (boolean expression)

```
So what is the requirement?
    % Determine whether xc is in
    % [L,R]
    xc = -b/2;
    if
```

\qquad

```
        disp('Yes')
        else
            disp('No')
        end
```


Logical operators

\&\& logical and: Are both conditions true?
E.g., we ask "is $L \leq x_{c}$ and $x_{c} \leq R$?"

In our code: $\mathrm{L}<=\mathrm{xc}$ \&\& $\mathrm{xc}<=\mathbf{R}$
|| logical or: Is at least one condition true?
E.g., we can ask if x_{c} is outside of $[L, R]$,
i.e., "is $x_{c}<L$ or $R<x_{c}$?"

In code: xc<L || R<xc
~ logical not: Negation
E.g., we can ask if X_{c} is not outside $[L, R]$.

In code: $\sim(x c<L| | R<x c)$

"Truth table"
\qquadX Y X \&\&Y "and" X $\|\mid Y$ (E.g., "or" $\sim y$ "not" F F F T T F T T

Always use logical operators to connect simple boolean expressions

Why is it wrong to use the expression
$L<=x c<=R$
for checking if X_{c} is in $[L, R]$?
Example: Suppose L is $5, R$ is 8 , and $x c$ is 10 . We know that 10 is not in [5,8], but the expression
L <= xc <= R gives...

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:

- Is the function strictly increasing in $[L, R]$?
-Which is smaller, $q(L)$ or $q(R)$?
-What is the minimum value of $q(x)$ in $[L, R]$?

Variables a, b, and c have whole number values. True or false: This fragment prints "Yes" if there is a right triangle with side lengths a, b, and c and prints "No" otherwise.

```
if a^2 + b^2 == c^2
    disp('Yes')
else
        disp('No')
    end
```

If $x c$ is between L and R

Min is at $x c$

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can choose to work with any piece next: the if-else construct/condition, \min at $x c$, or \min at an endpoint
Set up structure first: if-else, condition
if $\quad \mathrm{L}<=\mathrm{xc} \quad \& \& \mathrm{xc}<=\mathrm{R}$
Then min is at xc
else
Min is at one of the endpoints
end
Now refine our solution-in-progress. I'll choose to work on the
if-branch next

Refinement: filled in detail for task "min at xc"

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
```

else
Min is at one of the endpoints
end
Continue with refining the solution... else-branch next

Refinement: detail for task "min at an endpoint" ```if L<=xc && xc<=R % min is at xc qMin= xc^2 + b*xc + c; else % min is at one of the endpoints if % xc left of bracket % min is at L else % xc right of bracket % min is at R end end```
Continue with

```
        Final solution (given b,c,L,R,xc)
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if xc < L
            qMin= L^2 + b*L + c;
    else
            qMin= R^2 + b*R + c;
    end
end
l
```

Top-Down Design

An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.

